今天給各位分享結構工程有限元法的知識,其中也會對結構工程有限元法教程視頻進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!
今天給各位分享結構工程有限元法的知識,其中也會對結構工程有限元法教程視頻進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!
本文目錄一覽:
有限元是什么
問題一:有限元分析是什么? 這個問題好!有限元就是一個工具,可以利用其進行場的分析,如磁場、電場、應力場、流場等等。因為往往我們只知道一個宏觀的作用,但微觀(相對的)的情況到底是啥樣的不得而知,有限元通過把宏觀的大的東西進行劃分為一個個小的單元,把這些小的單元當做微觀的東西,進而進行分析,得到微觀的一個情況。如一個籃球框架,當有人扣籃拉著球框的時候,籃球架肯定會彎,但是彎多少呢?這個就可以利用有限元進行分析。先建立把籃筐架的物理模型,再將模型劃分為一個個很小的單元,再添加載荷、約束后進行分析,就能得到結果。
這個概念太大,我是新手,解釋不好。詳情百度,或者找本有限元的書看看,也許會有些直接的感受
問題二:什么是有限元 有限元法是一種有效解決數學問題的解方法。其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,單元上所作用的力等效到節點上,將微分方程中的變量改寫成由各變量或其導數的節點值與所選用的插值函數組成的線性表達式,就是用叉值函數來近似代替 ,借助于變分原理或加權余量法,將微分方程離散求解。
問題三:什么是有限元 有限元是那些 *** 在一起能夠表示實際連續域的離散單元。有限元的概念早在幾個世紀前就已產生并得到了應用,例如用多邊形(有限個直線單元)逼近圓來求得圓的周長,但作為一種方法而被提出,則是最近的事。有限元法最初被稱為矩陣近似方法,應用于航空器的結構強度計算,并由于其方便性、實用性和有效性而引起從事力學研究的科學家的濃厚興趣。經過短短數十年的努力,隨著計算機技術的快速發展和普及,有限元方法迅速從結構工程強度分析計算擴展到幾乎所有的科學技術領域,成為一種豐富多彩、應用廣泛并且實用高效的數值分析方法。
有限元方法與其他求解邊值問題近似方法的根本區別在于它的近似性僅限于相對小的子域中。20世紀60年代初首次提出結構力學計算有限元概念的克拉夫(Clough)教授形象地將其描繪為:“有限元法=Rayleigh Ritz法+分片函數”,即有限元法是Rayleigh Ritz法的一種局部化情況。不同于求解(往往是困難的)滿足整個定義域邊界條件的允許函數的Rayleigh Ritz法,有限元法將函數定義在簡單幾何形狀(如二維問題中的三角形或任意四邊形)的單元域上(分片函數),且不考慮整個定義域的復雜邊界條件,這是有限元法優于其他近似方法的原因之一。
對于不同物理性質和數學模型的問題,有限元求解法的基本步驟是相同的,只是具體公式推導和運算求解不同。有限元求解問題的基本步驟通常為:
第一步:問題及求解域定義:根據實際問題近似確定求解域的物理性質和幾何區域。
第二步:求解域離散化:將求解域近似為具有不同有限大小和形狀且彼此相連的有限個單元組成的離散域,習慣上稱為有限元網絡劃分。顯然單元越?。ňW絡越細)則離散域的近似程度越好,計算結果也越精確,但計算量及誤差都將增大,因此求解域的離散化是有限元法的核心技術之一。
第三步:確定狀態變量及控制方法:一個具體的物理問題通??梢杂靡唤M包含問題狀態變量邊界條件的微分方程式表示,為適合有限元求解,通常將微分方程化為等價的泛函形式。
第四步:單元推導:對單元構造一個適合的近似解,即推導有限單元的列式,其中包括選擇合理的單元坐標系,建立單元試函數,以某種方法給出單元各狀態變量的離散關系,從而形成單元矩陣(結構力學中稱剛度陣或柔度陣)。
為保證問題求解的收斂性,單元推導有許多原則要遵循。 對工程應用而言,重要的是應注意每一種單元的解題性能與約束。例如,單元形狀應以規則為好,畸形時不僅精度低,而且有缺秩的危險,將導致無法求解。
第五步:總裝求解:將單元總裝形成離散域的總矩陣方程(聯合方程組),反映對近似求解域的離散域的要求,即單元函數的連續性要滿足一定的連續條件??傃b是在相鄰單元結點進行,狀態變量及其導數(可能的話)連續性建立在結點處。
第六步:聯立方程組求解和結果解釋:有限元法最終導致聯立方程組。聯立方程組的求解可用直接法、選代法和隨機法。求解結果是單元結點處狀態變量的近似值。對于計算結果的質量,將通過與設計準則提供的允許值比較來評價并確定是否需要重復計算。
簡言之,有限元分析可分成三個階段,前處理、處理和后處理。前處理是建立有限元模型,完成單元網格劃分;后處理則是采集處理分析結果,使用戶能簡便提取信息,了解計算結果。
問題四:什么是有限元分析? 有限元分析是使用有限元方法來分析靜態或動態的物理物體或物理系統。在這種方法中一個物體或系統被分解為由多個相互聯結的、簡單、獨立的點組成的幾何模型。在這種方法中這些獨立的點的數量是有限的,因此被稱為有限元。由實際的物理模型中推導出來得平衡方程式被使用到每個點上,由此產生了一個方程組。這個方程組可以用線性代數的方法來求解。有限元分析的精確度無法無限提高。元的數目到達一定高度后解的精確度不再提高,只有計算時間不斷提高。有限元分析可被用來分析比較復雜的、用一般地說代數方法無法足夠精確地分析的系統,它可以提供使用其它方法無法提供的結果。在實踐中一般使用電腦來解決在分析時出現的巨量的數和方程組。在分析一個物體或系統中的壓力和變形時有限元分析是一種常用的手段,此外它還被用來分析許多其它問題如熱傳導、流體力學和電力學。
問題五:有限元好難 怎么學啊 ? 如果你的靜力學、材料力學、結構力學、矩陣代數都學得很好,學有限元就不難了。當然,有限元只適應于電腦計算,你還要懂電腦。如果前面有一個還沒學扎實,學有限元就難了。
所謂“有限元”,就是將一個連續的構建(或構造物),用有限個單元來表示。當然,單元與單元之間的連接節點都是固結點(視邊界條件而定),將單元和節點分別都編上號,即節點號和單元號。初學者最好從平面桿系開始,即將結構看成是一個平面圖,然后在這個平面圖上分成N個單元,再將其中一個單元單獨拿出來,分析這個單元上、單元兩端節點上有多少種力。
然后將這些力分別作用在節點上,會產生六個未知的值,即兩個節點分別的彎矩、水平力、垂直力。將這六個未知力寫出六個表達式(材料力學的知識),N個單元,就有6N個這樣的力,組成一個矩陣,當然,這個6N個方程還有N個右端項,這個右端項就是邊界條件(力的性質、作用、大小、固結或者鉸結等)。完成了矩陣方程,下面就是用計算方法來解出這個矩陣(在學習矩陣里講了這些方法)。
解出結果就是對應單元的六個力,最后將這些結果用大家都能看懂的格式打印出來,任務完成。
問題六:請問有限元方法的基本原理是什么? 有限元方法的基本原理:將連續的求解域離散為一組單元的組合體,用在每個單元內假設的近似函數來分片的表示求解域上待求的未知場函數,近似函數通常由未知場函數及其導數在單元各節點的數值插值函數來表示。從而使一個連續的無限自由度問題變成離散的有限自由度問題。
問題七:什么是有限元法,它的基本概念和思想是什么 有限元法(FEA,Finite Element Analysis)的基本概念是用較簡單的問題代替復雜問題后再求解。
它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然后推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解。這個解不是準確解,而是近似解,因為實際問題被較簡單的問題所代替。
有限元分析是什么
1、有限元分析結構工程有限元法,利用數學近似結構工程有限元法的方法對真實物理系統(幾何和載荷工況)進行模擬。利用簡單而又相互作用結構工程有限元法的元素(即單元)結構工程有限元法,實現有限數量的未知量去逼近無限未知量的真實系統。
2、有限元分析是用較簡單的問題代替復雜問題后再求解。它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然后推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解。因為實際問題被較簡單的問題所代替,所以這個解不是準確解,而是近似解。由于大多數實際問題難以得到準確解,而有限元不僅計算精度高,而且能適應各種復雜形狀,因而成為行之有效的工程分析手段。
3、有限元是那些集合在一起能夠表示實際連續域的離散單元。有限元的概念早在幾個世紀前就已產生并得到了應用,例如用多邊形(有限個直線單元)逼近圓來求得圓的周長,但作為一種方法而被提出,則是最近的事。有限元法最初被稱為矩陣近似方法,應用于航空器的結構強度計算,并由于其方便性、實用性和有效性而引起從事力學研究的科學家的濃厚興趣。經過短短數十年的努力,隨著計算機技術的快速發展和普及,有限元方法迅速從結構工程強度分析計算擴展到幾乎所有的科學技術領域,成為一種豐富多彩、應用廣泛并且實用高效的數值分析方法。
一般的桿件結構有限元法得到的解是近似解還是準確解,為什么
它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的 (較簡單的)近似解,然后推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解.這個解不是準確解,而是近似解,因為實際問題被較簡單的問題所代替.由于大多數實際問題難以得到準確解,而有限元不僅計算精度高,而且能適應各種復雜形狀,因而成為行之有效的工程分析手段. 有限元是那些集合在一起能夠表示實際連續域的離散單元.有限元的概念早在幾個世紀前就已產生并得到了應用,例如用多邊形(有限個直線單元)逼近圓來求得圓的周長,但作為一種方法而被提出,則是最近的事.有限元法最初被稱為矩陣近似方法,應用于航空器的結構強度計算,并由于其方便性、實用性和有效性而引起從事力學研究的科學家的濃厚興趣.經過短短數十年的努力,隨著計算機技術的快速發展和普及,有限元方法迅速從結構工程強度分析計算擴展到幾乎所有的科學技術領域,成為一種豐富多彩、應用廣泛并且實用高效的數值分析方法. 有限元方法與其他求解邊值問題近似方法的根本區別在于它的近似性僅限于相對小的子域中.20世紀60年代初首次提出結構力學計算有限元概念的克拉夫(Clough)教授形象地將其描繪為:“有限元法=Rayleigh Ritz法+分片函數”,即有限元法是Rayleigh Ritz法的一種局部化情況.不同于求解(往往是困難的)滿足整個定義域邊界條件的允許函數的Rayleigh Ritz法,有限元法將函數定義在簡單幾何形狀(如二維問題中的三角形或任意四邊形)的單元域上(分片函數),且不考慮整個定義域的復雜邊界條件,這是有限元法優于其他近似方法的原因之一. 對于不同物理性質和數學模型的問題,有限元求解法的基本步驟是相同的,只是具體公式推導和運算求解不同.有限元求解問題的基本步驟通常為: 第一步:問題及求解域定義:根據實際問題近似確定求解域的物理性質和幾何區域. 第二步:求解域離散化:將求解域近似為具有不同有限大小和形狀且彼此相連的有限個單元組成的離散域,習慣上稱為有限元網絡劃分.顯然單元越?。ňW絡越細)則離散域的近似程度越好,計算結果也越精確,但計算量及誤差都將增大,因此求解域的離散化是有限元法的核心技術之一. 第三步:確定狀態變量及控制方法:一個具體的物理問題通??梢杂靡唤M包含問題狀態變量邊界條件的微分方程式表示,為適合有限元求解,通常將微分方程化為等價的泛函形式. 第四步:單元推導:對單元構造一個適合的近似解,即推導有限單元的列式,其中包括選擇合理的單元坐標系,建立單元試函數,以某種方法給出單元各狀態變量的離散關系,從而形成單元矩陣(結構力學中稱剛度陣或柔度陣). 為保證問題求解的收斂性,單元推導有許多原則要遵循.對工程應用而言,重要的是應注意每一種單元的解題性能與約束.例如,單元形狀應以規則為好,畸形時不僅精度低,而且有缺秩的危險,將導致無法求解. 第五步:將單元總裝形成離散域的總矩陣方程(聯合方程組),反映對近似求解域的離散域的要求,即單元函數的連續性要滿足一定的連續條件.總裝是在相鄰單元結點進行,狀態變量及其導數(可能的話)連續性建立在結點處. 第六步:聯立方程組求解和結果解釋:有限元法最終導致聯立方程組.聯立方程組的求解可用直接法、選代法和隨機法.求解結果是單元結點處狀態變量的近似值.對于計算結果的質量,將通過與設計準則提供的允許值比較來評價并確定是否需要重復計算. 簡言之,有限元分析可分成三個階段,前處理、處理和后處理.前處理是建立有限元模型,完成單元網格劃分;后處理則是采集處理分析結果,使用戶能簡便提取信息,了解計算結果.
什么是有限元領域的線性問題
有限線性元分析
有限元法,也稱有限單元法或有限元素法,其基本思想是將求解區域離散為一組有限個、且按一定方式相互連接在一起的單元的組合體,它是隨著電子計算機的發展而需素發展起來的一種現代計算方法。
有限元分析較簡單的問題代替復雜問題后再求解的一種概念。它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然后推導求解這個域總的滿足條件,從而得到問題的解。這個解不是準確解,而是近似解,因為實際問
第 1 頁
題被較簡單的問題所代替。由于大多數實際問題難以得到準確解,而有限元不僅計算精度高,而且能適應各種復雜形狀,因而成為行之有效的工程分析手段。
有限元是那些集合在一起能夠表示實際連續域的離散單元。有限元的概念早在幾個世紀前就已產生并得到了應用,例如用多邊形逼近圓來求得圓的周長。有限元法最初被稱為矩陣近似方法,應用于航空器的結構強度計算,并由于其方便性、實用性和有效性而引起從事力學研究的科學家的濃厚興趣。經過數十年的努力,伴隨著計算機技術的快速發展和普及,有限元方法迅速從結構工程強
第 2 頁
度分析計算擴展到幾乎所有的科學技術領域,成為一種豐富多彩、應用廣泛并且實用高效的數值分析方法。
有限元方法與其他求解邊值問題近似方法的根本區別在于它的近似性僅限于相對小的子域中。2首次提出結構力學計算有限元概念的克拉夫教授形象地將其描繪為:“有限元法=Rayleigh Ritz法+分片函數”,即有限元法是Rayleigh Ritz法的一種局部化情況。不同于求解滿足整個定義域邊界條件的允許函數的Rayleigh Ritz法,有限元法將函數定義在簡單幾何形狀(如二維問題中的三角形或任意四邊形)的單元域上(分片函數),且不考慮整個定義域的復雜邊界
第 3 頁
條件,這是有限元法優于其他近似方法的原因之一。
對于不同物理性質和數學模型的問題,有限元求解法的基本步驟是相同的,只是具體公式推導和運算求解不同。有限元求解問題的基本步驟通常為:
第一步:問題及求解域定義:根據實際問題近似確定求解域的物理性質和幾何區域。
第二步:求解域離散化:將求解域近似為具有不同有限大小和形狀且彼此相連的有限個單元組成的離散域單元越?。ňW絡越細)則離散域的近似程度越好,計算結果也越精確,但計算量及誤
第 4 頁
差都將增大,因此求解域的離散化是有限元法的核心技術之一。
第三步:確定狀態變量及控制方法:一個具體的物理問題通??梢杂靡唤M包含問題狀態變量邊界條件的微分方程式表示,為適合有限元求解,通常將微分方程化為等價的泛函形式。
第四步:單元推導:對單元構造一個適合的近似解,即推導有限單元的列式,其中包括選擇合理的單元坐標系,建立單元試函數,以某種方法給出單元各狀態變量的離散關系,從而形成單元矩陣。
為保證問題求解的收斂性,單元推導有
第 5 頁
許多原則要遵循。 對工程應用而言,重要的是應注意每一種單元的解題性能與約束
第五步:總裝求解:將單元總裝形成離散域的總矩陣方程(聯合方程組),反映對近似求解域的離散域的要求,即單元函數的連續性要滿足一定的連續條件??傃b是在相鄰單元結點進行,狀態變量及其導數(可能的話)連續性建立在結點處。
第六步:聯立方程組求解和結果解釋:有限元法最終導致聯立方程組。聯立方程組的求解可用直接法、選代法和隨機法。求解結果是單元結點處狀態變量的
第 6 頁
近似值。對于計算結果的質量,將通過與設計準則提供的允許值比較來評價并確定是否需要重復計算。
簡而言之,有限元分析可分成三個階段,前處理、處理和后處理。前處理是建立有限元模型,完成單元網格劃分;后處理則是采集處理分析結果,使用戶能簡便提取信息,了解計算結果。
有限元法主要由分差分法和變分法組成
“差分法”即有限差值法,在有限元線性分析是一種重要的計算手段,是在比較兩個分數大小時,用“直除法”或者“化同法”等其他速算方式難以解決時可以采取的一種速算方式。兩個分數作比較時,
第 7 頁
若其中一個分數的分子與分母都比另外一個分數的分子與分母分別僅僅大一點,這時候使用“直除法”、“化同法”經常很難比較出大小關系,而使用“差分法”卻可以很好地解決這樣的問題。差分法可以分以下幾個步驟 :
一:建立微分方程
二:構造差分格式
三:求解差分方程
四:精度分析和檢驗
變分法是連續試函數的重要組成部分,其關鍵定理是歐拉-拉格朗日方程。它對應于泛函的臨界點。在尋找函數的極
第 8 頁
大和極小值時,在一個解附近的微小變化的分析給出一階的一個近似。它不能分辨是找到了最大值或者最小值。
變分法在理論物理中非常重要:在拉格朗日力學中,以及在最小作用原理在量子力學的應用中。變分法提供了有限元方法的數學基礎,它是求解邊界值問題的強有力工具。它們也在材料學中研究材料平衡中大量使用。變分原理為各種近似解奠定了理論基礎,是從事固體力學研究人員必備的專業理論。
中國人在彈性力學變分法的發明過程中也做出了重大貢獻,彈性力學變分法準確地說叫做 "胡海昌- 鷲津久一郎"變分法。
第 9 頁
由胡海昌和鷲津久一郎相互獨立地發明。
在現代工程技術領域中,許多物體的幾何形狀、載荷狀況及支撐約束等非常復雜,要精確獲得反應物體應力、應變和位移的解析相當困難,有時甚至是不可能的,而過多的簡化和假設,通常將導致極不準確乃至錯誤的解答,隨著計算機技術的發展,有限元法已經成為行之有效的方法。
有限元法應用的工程技術領域主要有三類:
(1) 靜態分析,求解不隨時間變化的系統平衡問題,如靜態系統彈塑性力靜
第 10 頁
力學、學分析、靜磁學分析、穩態熱傳導中場的分布求解等。
(2) 模態和穩定性分析。它是平衡問題的拓展,用以確定一些系統的特征值活臨界值,分析系統的固有特征和穩定性;
(3) 即時動態分析。求解一些隨時間變化的傳播問題,如彈性連續的即時的分析,液體動力學,有限元法作為一種日益重要的分析工具應用于許多復雜結構強度,剛度、穩定性分析計算等。
有限元法有眾多優點,首先它概念淺顯易懂,容易掌握,即可以通過非常直觀的物理途徑來學習,具有很強的實用性。
第 11 頁
其次,它的應用范圍極為廣泛,可以成功處理結構分析及求解熱傳導、流體力學以及電磁場等連續介質和磁場領域的許多問題。再次它采用矩陣形式表達式,便于計算機編制程序等。
第 12 頁
百度文庫
搜索
?
百度文庫10億海量資料,查找管理一應俱全
打開APP
繼續閱讀本文檔
關于結構工程有限元法和結構工程有限元法教程視頻的介紹到此就結束了,不知道你從中找到你需要的信息了嗎 ?如果你還想了解更多這方面的信息,記得收藏關注本站。
推薦閱讀: