本文作者:杭州加固改造設計公司

鋼結構的抗震設計原理(淺析鋼結構抗震設計)

杭州加固改造設計公司 2周前 ( 11-16 04:16 ) 153 搶沙發
今天給各位分享鋼結構的抗震設計原理的知識,其中也會對淺析鋼結構抗震設計進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!,2、,鋼結構柱腳的抗震設計要點分析建筑工程論文,3、,高層鋼結構抗震設計分析?

今天給各位分享鋼結構的抗震設計原理的知識,其中也會對淺析鋼結構抗震設計進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!

本文目錄一覽:

鋼結構抗震設計分析?

抗震設計基本要求

1、鋼結構房屋結構類型

常見的鋼結構房屋的結構體系有框架結構、框架一支援結構、框架一抗震墻板結構、簡體結構以及巨型框架結構等。鋼結構房屋的抗震性能的優劣取決于結構的選型,進行實際工程設計時,需要綜合考慮多種因素進行方案的優化,在優化過程中確定其適宜的結構體系。

2、鋼結構房屋結構布置原則

鋼結構房屋的結構體系和結構布置的選擇關系到結構的安全性、適用性和經濟性。和其他類型的建筑結構一樣,多高層鋼結構房屋應盡量采用規則的建筑方案。當結構體型復雜、平立面特別不規則時,可按實際需要在適當部位設置防震續,從而形成多個較規則的抗側力結構單元。由于鋼結構可耐受的結構變形大于混凝土結構,一般來說,不宜設抗震縫,必須設置時,抗震縫寬應不小于相應鋼筋混凝土結構房屋的1.5倍。

3、 鋼結構房屋適用的最大高度和高寬比

根據結構總體高度和抗震設防烈度確定結構類型和最大適用高度。結構的高寬比是影響結構整體穩定性和抗震性能的重要參數,它對結構剛度、側移和振動形式有直接影響。高度比指房屋總高度與平面較小寬度之比。高寬比值較大時,一方面使結構產生較大的水平位移及P—A效應,還由于傾覆力矩使柱產生很大的軸向力。因此,需要對鋼結構房屋的最大高寬比制定限值,不宜大于合理的限值,超過時應進行專門研究,采取必要的抗震措施。

抗震設計的一般方法

鋼材基本屬于各向同性的均質材料,且質輕高強、延性好,是一種很適合于建筑抗震結構的材料,在地震作用下,高層鋼結構房屋由于鋼材材質均勻,強度易于保證,所以結構的可靠性大;輕質高強的特點使得鋼結構房屋的自重輕,從而所受地震作用減??;良好的延性使結構在很大的變形下仍不致倒塌,從而保證結構在地震作用下的安全性。但是,鋼結構房屋如果設計和制造不當,在地震作用下,可能發生構件的失穩和材料的脆性破壞或連接破壞,使鋼材的性能得不到充分發揮,造成災難性后果。因此高層鋼結構房屋的抗震設計就顯得非常重要和必要。

1、建筑場地

在選擇建筑場地時,應根據工程需要,掌握地震活動情況和工程地質的有關資料,對建筑場地做出綜合評價。宜選擇對建筑抗震有利的地段,如開闊平坦的堅硬場地土或密實均勻的干硬場地土等地段,避開對建筑抗震不利的地段,如軟弱場地土、易液化土、條狀突出的山嘴、高聳孤立的山丘,非巖質的陡坡、采空區、河岸和邊坡邊緣等地段。

2、地基和基礎

為了避免建筑物不均勻沉降而導致結構產生裂隙、甚至傾斜,使結構構件過早進入塑性區,同一結構單元不應設置在性質截然不同的地基土上,不宜部分采用天然地基,部分采用樁基;地基有軟弱粘性土、可液化土或嚴重不均勻土層時,應加強基礎的整體性和剛性。

3、平面和立面布置

為了避免地震時建筑發生扭轉和應力集中或塑性變形集中而形成薄弱環節,建筑平面、立面布置宜規則、對稱,質量分布和剛度變化宜均勻。但不設置抗震縫時,應采用與實際情況相符合的計算模型,設置抗震縫時,應將建筑物分割成規則的結構單元。我國《抗震規范》對高層鋼結構房屋的最大適用高度和鋼結構房屋的最大高寬比都有規定:

(1)、結構體系應具有明確的計算簡圖和合理的地震作用傳遞途徑;應有多道抗震設防防線,避免因部分結構或構件失效而導致整個體系喪失抗震能力或喪失對重力的承載能力;應具備必要的承載能力,良好的變形能力和耗能能力;應具有合理的剛度分布和承載力分布,避免因局部削弱或突變而形成薄弱部位,產生過大的應力集中或塑性變形集中,對可能出現的薄弱部位,應采取措施提高其承載能力。

(2)、在抗震結構體系中,應使結構構件和連接部位具有良好的延性,避免脆性破壞,提高抗震結構的整體變形能力。因此,鋼結構構件應合理控制尺寸,防止局部失穩或整體失穩,如對梁翼緣和腹板的寬厚比和高厚比都作了明確規定。此外,還應加強各構件之間的連接,以保證結構的整體性,抗震支承系統應保證地震作用時結構的穩定。

(3)、對于女兒墻、圍護墻、雨篷、封墻等非結構構件,應使其與主體結構有可靠地連接和錨固,避免地震時倒塌傷人,產生附加震害;圍護墻、隔墻等與主體結構的連接,應避免設置不當而導致主體結構破壞;應避免吊頂塌落及懸吊較重的裝飾物墜落,不可避免時應采取可靠措施。

(4)、建筑物在強震作用下的表現,既是對抗震設計的檢驗,也是對施工質量的檢驗。施工質量的好壞,直接影響鋼結構房屋的抗震能力。因此,抗震結構對材料和施工質量的特別要求,應在設計文件上注明。建筑物的施工要特別注意符合圖紙上合理的抗震要求,注意材料選擇,確保施工質量。

隨著人們對地震的不斷認識,為防止出現嚴重的地震的嚴重災害,造成財產損失和生命傷亡。人們對高層鋼結構房屋的抗震要求不斷提高。本文闡明了設計人員進行高層鋼結構房屋抗震設計時,應首先從概念設計著手,制定比較合理的設計方案等,確保房屋抗震設防目標的實現。

更多關于工程/服務/采購類的標書代寫制作,提升中標率,您可以點擊底部官網客服免費咨詢:

鋼結構的抗震設計原理(淺析鋼結構抗震設計) 鋼結構蹦極施工

鋼結構柱腳的抗震設計要點分析建筑工程論文

摘要:柱腳是鋼結構中上部主體結構與基礎連接的重要節點,文章對銅結構的埋入式和外包式柱腳的抗震設計進行分析。

關鍵詞:鋼結構柱腳;埋入式;外包式

1.通常鋼結構的柱腳形式有外包式柱腳,埋入式柱腳及外露式柱腳3種

外包式柱腳指將鋼柱腳外面用鋼筋混凝土包住的柱腳,埋入式柱腳是把鋼柱固定在混凝土的基礎梁上柱腳,而外露式柱腳是在混凝土基礎表面固定鋼柱的柱腳,其也是最常用的鋼結構柱腳。鋼結構柱腳,反力特別大,因此設計規劃時一般采用固定柱腳。在此類情況下,采用外露式柱腳不僅會導致底板既大又厚,消耗大量鋼材,更重要的是難以確保柱腳被完全固定。外包式柱腳和埋入式柱腳鋼結構固定式柱腳的很好的選擇,通??拐鹪O計也用這兩類柱腳。

2.埋入式柱腳抗震設計

埋入式柱腳的特點,是將鋼柱以一定深度埋置在混凝土基礎梁中,埋人部分的鋼柱表面雖然焊有栓釘,但根據研究,在這種形式的柱腳中栓釘的作用不大,內力的`傳遞主要依靠混凝土對鋼柱翼緣的承壓力,柱的軸向壓力可由柱腳底板傳給混凝土,柱的軸向拉力可由柱腳底板伸出部分對混凝土的承壓作用傳給混凝土,或由錨栓傳給基礎。埋入式柱腳的支配因素是埋入深度。試驗表明,對于輕型工字形柱,埋深與柱截面高度之比不得小于2,對于大截面的寬翼緣H形柱和箱形柱,埋深與截面高度之比不得小3,且同時應滿足下式要求:

d=(6M/bf*fc)0.5

d-柱腳埋深;M-柱腳全截面屈服時的極限彎矩;bf-柱在受彎方向截面翼緣的寬度;fc-基礎混凝土軸心受壓強度設計值。

2.1柱腳軸向壓力由柱腳底板直接傳給基礎,按現行國家標準《混凝土結構設計規范》GB50010-2010驗算柱腳底板下混凝土的局部承壓,承壓面積為底板面積。

2.2埋入式柱腳應驗算在軸力和彎矩作用下基礎混凝土的側向抗彎極限承載力,埋入式柱腳的極限受彎承載力不應小于鋼柱全塑性抗彎承載力;與極限受彎承載力對應的剪力不應大于鋼柱的全塑性抗剪承載力。

埋入式柱腳的計算,可按以下假設進行:鋼柱的軸心壓力N是由埋入的鋼柱底板直接傳遞到鋼筋混凝土基礎上;柱腳處的彎矩M由埋入鋼柱的翼緣與混凝土基礎的承壓力來傳遞給基礎,或者由埋入部分鋼柱上的抗剪焊釘來傳遞;柱腳的剪力v由埋入鋼柱的翼緣和基礎混凝土的承壓力來傳遞。

2.3采用鋼管柱時埋入式柱腳的構造要求,截面寬厚比或徑厚比較大(≥33)的箱形柱和鋼管柱,其埋入部分應采取措施防止在混凝土側壓力下被壓壞。常用方法是填充混凝土,填充高度應稍高于混凝土基礎上表面;或在基礎上端附近設置內隔板或外隔板。隔板的厚度應按計算確定,外隔板的外伸長度不應小于柱邊長(或管徑)1/10。對于有抗拔要求的埋入式柱腳,可在埋入部分設置栓釘。

2.4鋼柱邊(角)柱柱腳埋入混凝土基礎部分的上、下部位均需布置u形鋼筋加強。當邊(角)柱混凝土保護層厚度較小時,可能出現沖切破壞,可用下列方法之一補強:

設置栓釘。根據過去的研究,栓釘對于傳遞彎矩和剪力沒有什么支配作用,但對于抗拉,由于栓釘受剪,能傳遞內力。

錨栓。因柱子的彎矩和剪力是靠混凝土的承壓力傳遞的,當埋深較深時,在錨栓中幾乎不引起內力,但柱受拉時,錨栓對傳遞內力起支配作用。在埋深較淺的柱腳中,加大埋深,提高底板和錨栓的剛度,可對錨栓傳力起積極作用。

3.外包式柱腳抗震設計

外包式柱腳的特點,是鋼柱底板與外包混凝土底部齊平,外包混凝土配有主筋和箍筋,頂部箍筋要集中配置,鋼柱的外包部分要設置栓釘,鋼柱翼緣外側的混凝土保護層厚度一般不應小于150mm,外包式柱腳的內力分布進行設計。當鋼柱與基礎鉸接時,柱腳彎矩完全由外包鋼筋混凝土承受,柱的剪力也由外包混凝土承擔。至于柱的軸力,一般認為,軸力可由鋼柱底板直接傳給基礎,軸向拉力可通過底板的伸出邊緣和錨栓傳給基礎。

外包式柱腳設計應注意的主要問題是:(1)當外包層高度較低時,外包層和柱面間很容易出現粘結破壞,為了確保剛度和承載力,外包層應達到柱截面的2.5倍以上,其厚度應符合有效截面要求。(2)若主筋的粘結力和錨固長度不夠,主筋在屈服前會拔出,使承載力降低。為此,主筋頂部一定要設彎鉤,下端也應設彎鉤并確保錨固長度不小于25d。(3)如果箍筋太少,外包層就會出現斜裂縫,箍筋至少要滿足通常鋼筋混凝土柱的設計要求,其直徑和間距應符合規范規定。為了防止出現承壓裂縫,使剪力能從主筋順暢地傳給鋼筋混凝土,除了通常的箍筋外,柱頂密集配置幾道箍筋十分重要。(4)抗震設計時,在柱腳達到最大受彎承載力之前,不應出現剪切裂縫。(5)采用箱形柱或圓管柱時,若壁板或管壁局部變形,承壓力會集中出現在局部。為了防止局部變形,柱壁板寬厚比和徑厚比應符合《鋼結構設計規范》GB50017-2003關于塑性設計規定,也可在柱腳部分在鋼管內澆灌注混凝土。

埋入式柱腳和外包式柱腳的混凝土保護層厚度均不小于180mm,鋼柱埋人部分和外包部分均宜在柱翼緣上設置圓頭焊釘,其直徑不得小于16mm,其水平向和豎向的中心距離不得大于200mm。

4.結語

外包式和埋人式柱腳在抗震設計中已經被廣泛應用,文章從受力等多方面對其具體設計進行了初步探討,希望能為相關設計提供參考。

高層鋼結構抗震設計分析?

目前鋼結構的抗震設計原理,鋼結構普遍應用于各種類型鋼結構的抗震設計原理的民用建筑中,在高層及超高層建筑中的應用則更為廣泛。同混凝土結構相比,鋼結構具有韌性好、強度與重量比高的優點,具有優越的抗震性能;但是,如果鋼結構房屋在結構設計、材料選用、施工制作和維護上出現問題。則其優良的鋼材特性將得不到充分的發揮,在地震作用下同樣會造成結構的局面破壞或整體倒塌。

一、高層建筑發展概括

80年代,是我國高層建筑在設計計算及施工技術各方面迅速發展的階段。各大中城市普遍興建高度在100m左右或100m以上的以鋼筋為主的建筑,建筑層數和高度不斷增加,功能和類型越來越復雜,結構體系日趨多樣化。比較有代表性的高層建筑有上海錦江飯店,它是一座現代化的高級賓館,總高153.52m,全部采用框架一芯墻全鋼結構體系,深圳發展中心大廈43層高165.3m,加上天線的高度共185.3m,這是我國第一幢大型高層鋼結構建筑。進入90年代我國高層建筑的設計與施工技術進入鋼結構的抗震設計原理了新的階段。不僅結構體系及建筑材料出現多樣化而且在高度上長幅很大有一個飛躍。深圳于1995年6月封頂的地王大廈,81層高,385.95m為鋼結構,它居目前世界建筑的第四位。

二、高層鋼結構震害現象及其原因分析

鋼結構被認為具有卓越的抗震性能,在歷次的地震中,鋼結構房屋的震害要小于鋼筋混凝土結構房屋。很少發生整體破壞或倒塌現象。盡管如此,由于焊接、連接、冷加工等工藝技術以及外部環境的影響,鋼材材料的優點將受到影響。特別是因設計、施工以及維護不當,就很可能造成結構的破壞。根據鋼結構在歷次地震中的破壞形態,可能破壞形式分為以下幾類:

1、 結構倒塌

結構倒塌是地震中結構破壞最嚴重的形式。造成結構倒塌的主要原因是結構薄弱層的形成,而薄弱層的形成是由于結構樓層屈服強度系數和抗變4剛度沿高度分布不均勻造成的。這就要求在設計過程中應盡量避免上述不利因素的出現。

2、 節點破壞

節點破壞是地震中發生最多的一種破壞形式。剮性連接的結構構件一般采用鉚接或焊接形式連接。如果在節點的設計和施工中,構造及焊縫存在缺陷,節點區就可能出現應力集中、受力小均的現象,在地震中很容易出現連接破壞。梁柱節點可能出現的破壞現象主要表現為:鉚接斷裂,焊接部位位脫,加勁板斷型、屈曲,腹板斷裂、屈曲等。

3、 構件破壞

在以往所有地震中,多高層建筑鋼結構構件破壞的主要形式有支撐的破壞與失穩以及梁柱局部破壞兩種。(1)支撐的破壞與失穩。當地震強度較大時,支撐承受反復拉壓的軸向力作用,一旦壓力超出支撐的屈曲臨界力時,就會出現破壞或失穩。(2)梁柱局部破壞。對于框架柱,主要有翼緣屈曲、翼縫撕裂,甚至框架柱會出現水平裂縫或斷裂破壞。對于框架梁,主要有翼緣屈曲、腹板屈曲和開裂、扭轉屈曲等破壞形態。

4、基礎錨固破壞

鋼構件與基礎的錨固破壞主要表現為柱腳處的地腳螺栓脫開、混凝土破碎導致錨固失效、連接板斷裂等,這種破壞形式曾發生多起,根據對上述鋼結構房屋震害特征的分析可知,盡管鋼結構抗震性能較好,但在歷次的地震中,也會出現不同程度的震害。究其原因,元素是和結構設計、結構構造、施工質量、材料質量、日常維護等有關,為了預防以上震害的出現,減輕震害帶來的損失,多高層鋼結構房屋抗震設計必須嚴格遵循有關規程進行。

三、抗震設計基本要求

1、鋼結構房屋結構類型

常見的鋼結構房屋的結構體系有框架結構、框架一支援結構、框架一抗震墻板結構、簡體結構以及巨型框架結構等。鋼結構房屋的抗震性能的優劣取決于結構的選型,進行實際工程設計時,需要綜合考慮多種因素進行方案的優化,在優化過程中確定其適宜的結構體系。

2、鋼結構房屋結構布置原則

鋼結構房屋的結構體系和結構布置的選擇關系到結構的安全性、適用性和經濟性。和其鋼結構的抗震設計原理他類型的建筑結構一樣,多高層鋼結構房屋應盡量采用規則的建筑方案。當結構體型復雜、平立面特別不規則時,可按實際需要在適當部位設置防震續,從而形成多個較規則的抗側力結構單元。由于鋼結構可耐受的結構變形大于混凝土結構,一般來說,不宜設抗震縫,必須設置時,抗震縫寬應不小于相應鋼筋混凝土結構房屋的1.5倍。

3、 鋼結構房屋適用的最大高度和高寬比

根據結構總體高度和抗震設防烈度確定結構類型和最大適用高度。結構的高寬比是影響結構整體穩定性和抗震性能的重要參數,它對結構剛度、側移和振動形式有直接影響。高度比指房屋總高度與平面較小寬度之比。高寬比值較大時,一方面使結構產生較大的水平位移及P—A效應,還由于傾覆力矩使柱產生很大的軸向力。因此,需要對鋼結構房屋的最大高寬比制定限值,不宜大于合理的限值,超過時應進行專門研究,采取必要的抗震措施。

抗震設計的一般方法

鋼材基本屬于各向同性的均質材料,且質輕高強、延性好,是一種很適合于建筑抗震結構的材料,在地震作用下,高層鋼結構房屋由于鋼材材質均勻,強度易于保證,所以結構的可靠性大;輕質高強的特點使得鋼結構房屋的自重輕,從而所受地震作用減??;良好的延性使結構在很大的變形下仍不致倒塌,從而保證結構在地震作用下的安全性。但是,鋼結構房屋如果設計和制造不當,在地震作用下,可能發生構件的失穩和材料的脆性破壞或連接破壞,使鋼材的性能得不到充分發揮,造成災難性后果。因此高層鋼結構房屋的抗震設計就顯得非常重要和必要。

1、建筑場地

在選擇建筑場地時,應根據工程需要,掌握地震活動情況和工程地質的有關資料,對建筑場地做出綜合評價。宜選擇對建筑抗震有利的地段,如開闊平坦的堅硬場地土或密實均勻的干硬場地土等地段,避開對建筑抗震不利的地段,如軟弱場地土、易液化土、條狀突出的山嘴、高聳孤立的山丘,非巖質的陡坡、采空區、河岸和邊坡邊緣等地段。

2、地基和基礎

為了避免建筑物不均勻沉降而導致結構產生裂隙、甚至傾斜,使結構構件過早進入塑性區,同一結構單元不應設置在性質截然不同的地基土上,不宜部分采用天然地基,部分采用樁基;地基有軟弱粘性土、可液化土或嚴重不均勻土層時,應加強基礎的整體性和剛性。

3、平面和立面布置

為了避免地震時建筑發生扭轉和應力集中或塑性變形集中而形成薄弱環節,建筑平面、立面布置宜規則、對稱,質量分布和剛度變化宜均勻。但不設置抗震縫時,應采用與實際情況相符合的計算模型,設置抗震縫時,應將建筑物分割成規則的結構單元。我國《抗震規范》對高層鋼結構房屋的最大適用高度和鋼結構房屋的最大高寬比都有規定:

(1)、結構體系應具有明確的計算簡圖和合理的地震作用傳遞途徑;應有多道抗震設防防線,避免因部分結構或構件失效而導致整個體系喪失抗震能力或喪失對重力的承載能力;應具備必要的承載能力,良好的變形能力和耗能能力;應具有合理的剛度分布和承載力分布,避免因局部削弱或突變而形成薄弱部位,產生過大的應力集中或塑性變形集中,對可能出現的薄弱部位,應采取措施提高其承載能力。

(2)、在抗震結構體系中,應使結構構件和連接部位具有良好的延性,避免脆性破壞,提高抗震結構的整體變形能力。因此,鋼結構構件應合理控制尺寸,防止局部失穩或整體失穩,如對梁翼緣和腹板的寬厚比和高厚比都作了明確規定。此外,還應加強各構件之間的連接,以保證結構的整體性,抗震支承系統應保證地震作用時結構的穩定。

(3)、對于女兒墻、圍護墻、雨篷、封墻等非結構構件,應使其與主體結構有可靠地連接和錨固,避免地震時倒塌傷人,產生附加震害;圍護墻、隔墻等與主體結構的連接,應避免設置不當而導致主體結構破壞;應避免吊頂塌落及懸吊較重的裝飾物墜落,不可避免時應采取可靠措施。

(4)、建筑物在強震作用下的表現,既是對抗震設計的檢驗,也是對施工質量的檢驗。施工質量的好壞,直接影響鋼結構房屋的抗震能力。因此,抗震結構對材料和施工質量的特別要求,應在設計文件上注明。建筑物的施工要特別注意符合圖紙上合理的抗震要求,注意材料選擇,確保施工質量。

隨著人們對地震的不斷認識,為防止出現嚴重的地震的嚴重災害,造成財產損失和生命傷亡。人們對高層鋼結構房屋的抗震要求不斷提高。本文闡明了設計人員進行高層鋼結構房屋抗震設計時,應首先從概念設計著手,制定比較合理的設計方案等,確保房屋抗震設防目標的實現。

鋼結構各種流程

應注意的事項

(1)制作:鋼結構制作包括放樣、號料、切割、校正等諸多環節。高強度螺栓處理后的摩擦面,抗滑移系數應符合設計要求。

制作質量檢驗合格后進行除銹和涂裝。一般安裝焊縫處留出30~50mm暫不涂裝。

(2)焊接:焊工必須經考試合格并取得合格證書,且必須在其考試合格項目及其認可范圍內施焊。焊縫施焊后須在工藝規定的焊縫及部位打上焊工鋼印。

焊接材料與母材應匹配,全焊透的一、二級焊縫應采用超聲波探傷進行內部缺陷檢驗,超聲波探傷不能對缺陷作出判斷時,采用射線探傷。

施工單位首次采用的鋼材、焊接材料、焊接方法等,進行焊接工藝評定。

(3)運輸:運輸鋼構件時,要根據鋼構件的長度和重量選用車輛。鋼構件在車輛上的支點、兩端伸出的長度及綁扎方法均應保證構件不產生變形、不損傷涂層。

(4)安裝:鋼結構安裝要按施工組織設計進行,安裝程序須保證結構的穩定性和不導致永久性變形。安裝柱時,每節柱的定位軸線須從地面控制軸線直接引上。鋼結構的柱、梁、屋架等主要構件安裝就位后,須立即進行校正、固定。

由工廠處理的構件摩擦面,安裝前須復驗抗滑移系數,合格后方可安裝。

(5)防火與防銹:

1)鋼結構防火性能較差。當溫度達到550℃時,鋼材的屈服強度大約降至正常溫度時屈服強度的0.7,結構即達到它的強度設計值而可能發生破壞。

設計時應根據有關防火規范的規定,使建筑結構能滿足相應防火標準的要求。在防火標準要求的時間內,應使鋼結構的溫度不超過臨界溫度,以保證結構正常承載能力。

2)外露的鋼結構可能會受到大氣,特別是被污染的大氣的嚴重腐蝕,最普通的是生銹。這就必須對構件的表面進行防腐蝕處理,以保證鋼結構的正常使用。防腐處理的方法根據構件表面條件及使用壽命的要求決定。

更多關于工程/服務/采購類的標書代寫制作,提升中標率,您可以點擊底部官網客服免費咨詢:

鋼結構的設計原理和常見錯誤做法

鋼結構是主要由鋼制材料組成的結構,是主要的建筑結構類型之一。結構主要由型鋼和鋼板等制成的鋼梁、鋼柱、鋼桁架等構件組成,各構件或部件之間通常采用焊縫、螺栓或鉚釘連接。因其自重較輕,且施工簡便,廣泛應用于大型廠房、場館、超高層等領域。

鋼結構設計原理

(1) 將預埋的插筋清理干凈,按1:6調整其保護層厚度符合規范要求。先綁2~4根豎筋,并畫好橫筋分擋標志,然后在下部及齊胸處綁兩根橫筋定位,并畫好豎筋分檔標志。一般情況橫筋在外,豎筋在里,所以先綁豎筋后綁橫筋,橫豎筋的間距及位置應符合設計要求。

(2) 墻筋為雙向受力鋼筋,所有鋼筋交叉點應逐點綁扎,豎筋搭接范圍內,水平筋不少于三道。橫豎筋搭接長度和搭接位置,符合設計圖紙和施工規范要求。

(3) 雙排鋼筋之間應綁間距支撐和拉筋,以固定鋼筋間距和保護層厚度。支撐或拉筋可用φ6和φ8鋼筋制作,間距600mm左右,用以保證雙排鋼筋之間的距離。

(4) 在墻筋的外側應綁扎或安裝墊塊,以保證鋼筋保護層厚度。

(5) 為保證門窗洞口標高位置正確,在洞口豎筋上畫出標高線。門窗洞口要按設計要求綁扎過梁鋼筋,錨入墻內長度要符合設計及規范要求。

(6) 各連接點的抗震構造鋼筋及錨固長度,均應按設計要求進行綁扎。

(7) 配合其他工程安裝預埋管件、預留洞口等,其位置、標高均應符合設計要求。

2、頂板鋼筋綁扎

(1) 清理模板上的雜物,用墨斗彈出主筋,分布筋間距。

(2) 按設計要求,先擺放受力主筋,后放分布筋。綁扎板底鋼筋一般用順扣或八字扣,除外圍兩根筋的相交點全部綁扎外,其余各點可交錯綁扎(雙向板相交點須全部綁扎)。如板為雙層鋼筋,兩層筋之間須加鋼筋馬凳,以確保上部鋼筋的位置。

(3) 板底鋼筋綁扎完畢后,及時進行水電管路的敷設和各種埋件的預埋工作。

(4) 水電預埋工作完成后,及時進行鋼筋蓋鐵的綁扎工作。綁扎時要掛線綁扎,保證蓋鐵兩端成行成線。蓋鐵與鋼筋相交點必須全部綁扎。

(5) 鋼筋綁扎完畢后,及時進行鋼筋保護層墊塊和蓋鐵馬凳的安裝工作。墊塊厚度等于保護層厚度,如設計無要求時為15mm。鋼筋的錨固長度應符合設計要求。

常見錯誤做法總結于下:

1.暗梁當樓面梁使用。這是最常見的錯誤。暗梁之所以不能當樓面梁是因為其剛度不夠,荷載不能按自己設想的方式傳遞,即樓面荷載—板—暗梁—柱的傳遞方式幾乎是不可能的。這樣將大大低估板的內力。我個人認為,根據內力按最短距離傳遞的原則,用暗梁代替梁只有在板受集中力時,在集中力處沿板的最短方向(雙向板沿兩個垂直方向)設置暗梁,可以認為集中力由暗梁承受以滿足抗彎強度和裂縫要求,此時板的計算跨度絕對不能按支承于暗梁來考慮。但很多時候,這種做法也沒有必要,直接加大板的受力鋼筋即可,除非因抗剪(沖切)需要箍筋而使用暗梁。

2.與上一個問題相對應的是,在剛度發生較大突變(增加)處,應視為梁。典型的問題是不同高程的板之間出現的錯臺,錯臺本身平面外剛度比較大,而板的`平面外剛度較小,不管你是否愿意,板上的荷載都要傳遞到錯臺上,因此應當按梁來設計,尤其是抗剪鋼筋應滿足要求。地下通道、車站遇到的這種情況較多,其荷載又比較大,但大多數人對錯臺的處理卻非常草率,這很令人擔憂。

3.框架結構形成事實上的鉸接。最常見的是梁剛度比柱大的多,使柱對梁的約束作用較弱,形成事實上的鉸。這樣減少了超靜定次數,于抗震不利,也難以形成“強柱弱梁”。 坂神地震時,地鐵車站柱的破壞相當嚴重,也提醒我們不能忽視這個問題。地鐵車站頂底板可看作筏板,其梁的剛度當然大于柱,但中板處不宜將梁的剛度做得較大。另外,地下工程如通道、涵洞、地鐵車站等,有時不小心也容易作成剛度較大的頂底板和剛度較小的側墻,這樣橫剖面就形成鉸接的四邊形,兩側墻土壓力相差較大時很容易失穩,也不利于抗震。

4.板墻受力鋼筋置于分布鋼筋的內側。很多人總把分布鋼筋想象成類似梁的箍筋,因此配筋不小心就這樣倒置。分布鋼筋的作用在于固定受力鋼筋位置,傳遞受力及防止溫度收縮裂縫,它不需要象梁柱箍筋那樣外包以防止鋼筋受壓向外鼓出,更重要的是,板墻截面高度較小,為增加有效高度發揮受力筋作用,一般情況下應當外置受力鋼筋。某些特殊情況,如地下連續墻,由于施工方便原因可犧牲板有效高度,將受力鋼筋內置。

5.在緊靠柱的位置框架梁上搭梁。由于緊靠柱支承的位置,框架梁的轉動受到約束,當其上所搭的梁荷載較大時,將產生很大的扭矩,使框架梁的配筋變得困難。某些設計人員將此處框架梁與搭接梁的連接看作鉸接,這是很不安全的,因為梁的塑性變形能力有限。

6.板鋼筋不伸入上翻梁受力鋼筋之上。這在地面上結構中還不容易出現,但在地下工程中,由于結構形式不夠直觀,稍有疏忽就會犯錯。最常見的是通道入口處頂板有一道收口的橫梁,其底部順板向下傾斜,形成不規則的梁。多數人配筋將此梁受力鋼筋仍然沿水平方向布置,板的縱向鋼筋則從下側錨入梁內。地下工程沒有完全的分布鋼筋,在這個橫梁處,板的縱向鋼筋實際上是受力鋼筋,不但要按受力鋼筋錨固,還應當在梁受力鋼筋之上。另外,很多人認為此梁受力小,因而配筋馬虎。實際上,此梁由于單邊受力,有一定的扭矩,配筋應考慮板上荷載傳遞到此梁上。

7.地鐵車站不計中板開洞。由于開洞的影響比較難算,也由于部分人對開洞影響沒有當成一回事,因而計算時都加以忽略。當開洞較小時,這樣也許沒有多大影響,但地鐵車站有時在中板沿橫向平行布置三排樓、扶梯,嚴重削弱該處樓板剛度,雖然洞邊有加強的梁,但梁高受到限制,中板厚度通常都為400~500,因此不足以彌補其剛度的損失。至于加暗梁來加強洞口,更不能彌補計算模式與實際不符的不足。

關于鋼結構的抗震設計原理和淺析鋼結構抗震設計的介紹到此就結束了,不知道你從中找到你需要的信息了嗎 ?如果你還想了解更多這方面的信息,記得收藏關注本站。

推薦閱讀:

外跨電梯設計圖片(外跨樓梯制作圖)

石材幕墻施工(石材幕墻施工工藝)

鋼結構節點計算軟件(yjk鋼結構節點計算)

鋼結構加固新技術有哪幾種(鋼結構加固方案怎么寫)

Q300平米以上飯店消防報審(300平方餐飲消防要求)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

微信掃一掃打賞

閱讀
分享