今天給各位分享高層鋼結構第二階段抗震設計的知識,其中也會對淺析鋼結構抗震設計進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!,4、,多高層結構的彈塑性分析,5、,高層建筑的抗震設計與抗震結構,6、,高層鋼結構抗震設計分析?
今天給各位分享高層鋼結構第二階段抗震設計的知識,其中也會對淺析鋼結構抗震設計進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!
本文目錄一覽:
高層建筑的抗震設計
80年代,是中國高層建筑在設計計算及施工技術各方面迅速發展的階段。各大中城市普遍興建高度在100m左右或100m以上的以鋼筋為主的建筑,建筑層數和高度不斷增加,功能和類型越來越復雜,結構體系日趨多樣化。比較有代表性的高層建筑有上海錦江飯店,它是一座現代化的高級賓館,總高153.52m,全部采用框架一芯墻全鋼結構體系,深圳發展中心大廈43層高165.3m,加上天線的高度共185.3m,這是中國第一幢大型高層鋼結構建筑。進入90年代中國高層建筑結構的設計與施工技術進入了新的階段。不僅結構體系及建筑材料出現多樣化而且在高度上長幅很大有一個飛躍。深圳于1995年6月封頂的地王大廈,81層高,385.95m為鋼結構,它居目前世界建筑的第四位。 建筑結構抗震規范
建筑結構抗震規范實際上是各國建筑抗震經驗帶有權威性的總結,是指導建筑抗震設計(包括結構動力計算,結構抗震措施以及地基抗震分析等主要內容)的法定性文件它既反映了各個國家經濟與建設的時代水平,又反映了各個國家的具體抗震實踐經驗。它雖然受抗震有關科學理論的引導,向技術經濟合理性的方向發展,但它更要有堅定的工程實踐基礎,把建筑工程的安全性放在首位,容不得半點冒險和不實。正是基于這種認識,現代規范中的條文有的被列為強制性條文,有的條文中用了“嚴禁,不得,不許,不宜”等體現不同程度限制性和“必須,應該,宜于,可以”等體現不同程度靈活性的用詞。
抗震設計的理論
1、擬靜力理論。擬靜力理論是20世紀10~40年代發展起來的一種理論,它在估計地震對結構的作用時,僅假定結構為剛性,地震力水平作用在結構或構件的質量中心上。地震力的大小當于結構的重量乘以一個比例常數(地震系數)。
2、反應譜理論。反應譜理論是在加世紀40~60年代發展起來的,它以強地震動加速度觀測記錄的增多和對地震地面運動特性的進一步了解,以及結構動力反應特性的研究為基礎,是加理工學院的一些研究學者對地震動加速度記錄的特性進行分析后取得的一個重要成果。
3、動力理論。動力理論是20世紀70-80年廣為應用的地震動力理論。它的發展除了基于60年代以來電子計算機技術和試驗技術的發展外,人們對各類結構在地震作用下的線性與非線性反應過程有了較多的了解,同時隨著強震觀測臺站的不斷增多,各種受損結構的地震反應記錄也不斷增多。進一步動力理論也稱地震時程分析理論,它把地震作為一個時間過程,選擇有代表性的地震動加速度時程作為地震動輸入,建筑物簡化為多自由度體系,計算得到每一時刻建筑物的地震反應,從而完成抗震設計工作。 (一)高層建筑抗震措施
在對結構的抗震設計中,除要考慮概念設計、結構抗震驗算外,歷次地震后人們在限制建筑高度,提高結構延性(限制結構類型和結構材料使用)等方面總結的抗震經驗一直是各國規范重視的問題。當前,在抗震設計中,從概念設計,抗震驗算及構造措施等三方面入手,在將抗震與消震(結構延性)結合的基礎上,建立設計地震力與結構延性要求相互影響的雙重設計指標和方法,直至進一步通過一些結構措施(隔震措施,消能減震措施)來減震,即減小結構上的地震作用使得建筑在地震中有良好而經濟的抗震性能是當代抗震設計規范發展的方向。而且,強柱弱梁,強剪弱彎和強節點弱構件在提高結構延性方面的作用已得到普遍的認可。
(二)高層建筑的抗震設計理念
中國《建筑抗震規范》(GB50011-2001)對建筑的抗震設防提出“三水準、兩階段”的要求,“三水準”即“小震不壞,中震可修,大震不倒”。當遭遇第一設防烈度地震即低于該地區抗震設防烈度的多遇地震時,結構處于彈性變形階段,建筑物處于正常使用狀態。建筑物一般不受損壞或不需修理仍可繼續使用。因此,要求建筑結構滿足多遇地震作用下的承載力極限狀態驗算,要求建筑的彈性變形不超過規定的彈性變形限值。當遭遇第二設防烈度地震即相當于該地區抗震設防烈度的基本烈度地震時,結構屈服進入非彈性變形階段,建筑物可能出現一定程度的破壞。但經一般修理或不需修理仍可繼續使用。因此,要求結構具有相當的延性能力(變形能力)不發生不可修復的脆性破壞。當遭遇第三設防烈度地震即高于該地區抗震設防烈度的罕遇地震時,結構雖然破壞較重,但結構的非彈性變形離結構的倒塌尚有一段距離。不致倒塌或者發生危及生命的嚴重破壞,從而保障了人員的安全。因此,要求建筑具有足夠的變形能力,其彈塑性變形不超過規定的彈塑性變形限值。
三個水準烈度的地震作用水平,按三個不同超越概率(或重現期)來區分的:多遇地震:50年超越概率63.2%,重現期50年;設防烈度地震(基本地震):50年超越概率10%,重現期475年;罕遇地震:50年超越概率2%-3%,重現期1641-2475年,平均約為2000年。
對建筑抗震的三個水準設防要求,是通過“兩階段”設計來實現的,其方法步驟如下:第一階段:第一步采用與第一水準烈度相應的地震動參數,先計算出結構在彈性狀態下的地震作用效應,與風、重力荷載效應組合,并引入承載力抗震調整系數,進行構件截面設計,從而滿足第一水準的強度要求;第二步是采用同一地震動參數計算出結構的層間位移角,使其不超過抗震規范所規定的限值;同時采用相應的抗震構造措施,保證結構具有足夠的延性、變形能力和塑性耗能,從而自動滿足第二水準的變形要求。第二階段:采用與第三水準相對應的地震動參數,計算出結構(特別是柔弱樓層和抗震薄弱環節)的彈塑性層間位移角,使之小于抗震規范的限值。并采用必要的抗震構造措施,從而滿足第三水準的防倒塌要求。
(三)高層建筑結構的抗震設計方法
中國的《建筑抗震設計規范》(GB50011-2001)對各類建筑結構的抗震計算應采用的方法作了以下規定:1、高度不超過40m,以剪切變形為主且質量和剛度沿高度分布比較均勻的結構,以及近似于單質點體系的結構,可采用底部剪力法等簡化方法。2、除1款外的建筑結構,宜采用振型分解反應譜方法。3、特別不規則的建筑、甲類建筑和限制高度范圍的高層建筑,應采用時程分析法進行多遇地震下的補充計算,可取多條時程曲線計算結果的平均值與振型分解反應譜法計算結果的較大值。
關于高層建筑防火安全問題
人類的高層建筑的火災已經成為重大的災害,它涉及的范圍較廣,業主的財產以及人身安全受到重創。預防高層建筑的防火安全性問題已成為重中之重?,F代高層住宅建筑的高度不斷延伸,往往是一層受災殃及整體建筑。如何解決高層建筑的火災防范問題是當今建設者們首當其沖面對的問題,應當引起全社會的關注。近年來,由于住宅小區火災的防范不到位,導致火災事件數量逐年攀升,對于人民生命財產所造成的損失也逐步擴大。消除這一安全隱患,應當是政府和建設部門的頭等大事。
一、高層建筑的火災因素
(1)天然氣設施氣體泄漏造成的火災蔓延。
(2)家用電器使用不當而引起的火災。
(3)人為的火災因素。
(4)煙花爆竹燃放引起的火災。
(5)民用電線短路造成的火災。
(6)間接引發的火災。
二、高層建筑防火材料及其技術規范問題:
(1)高層建筑墻體的防火材料有質量問題。
(2)室內防火安全監控裝置失控,產品的技術性能不達標。
(3)建筑材料的防火設施擴展使用問題沒有得到建設部門的支持。
(4)沒有建立高層建筑自動滅火裝置的設計性規范條文。
(5)施工單位對于住宅裝飾材料的選型沒有統一的定性標準。
(6)沒有頒布完全禁止高層建筑以及住宅小區煙花燃放法令。
(7)天然氣終端使用設備的安全性檢查不到位。
(8)沒有設立預防天然氣泄漏的安全監控裝置。
(9)季節性的安檢宣傳工作不到位。
三、關于高層建筑的火災防范措施
(1)健全高層住宅火災的防范網絡安全自動控制系統。
(2)縮減住宅建筑的高度,以減少財產及生命的損失及傷害。
(3)降低高層建筑的密集度。
(4)完善建筑材料的防火性措施,加快研制新型的防火涂層材料和建筑材料。
(5)研制新型的民用防火產品,加大推廣使用家用防火材料生產力度。
(6)防火安檢期的不定性檢查和教育宣傳。
(7)加快研制家庭民用快速自動滅火器材。
(8)制定社區防火責任人制度并落實到位。
四、建設預防火災的新型高層智能建筑
建議設計院校以及建委的相關部門盡快設計出完全能夠防范火災的高層智能住宅建筑。
(1)居民住宅應當安裝自動滅火裝置。
(2)門窗以及玻璃采用抗高溫防火材料。
(3)家用電氣設備的外殼使用防火材料制成。
(4)禁止使用木地板材料,加快研制新型的防火保溫地板材料。
(5)民用電路所使用的電線絕緣層必須采用耐高溫防火材料。
(6)嚴格要求住戶安裝天然氣泄漏報警裝置。
(7)加快研制小戶型的高壓滅火簡易裝置,做到每戶安裝一部滅火設備。
(8)做到群策群防,建立防火安全員安全監察宣傳責任制度。
(9)地方政府設立預防火災安全委員會。
(10)設立小區消防安全救災小組,由火警轄區統一領導指揮。
(11)門窗墻外的上方設立防火隔離延伸罩,防止火苗竄到上一層建筑。這項可納入建筑設計規范。
(12)加大電力能源的利用率,減少天然氣能源的高層住宅引入,或禁止城區使用天然氣。
(13)加快新型安全的綜合性能源開發。
如果按著上述建議進行火災防范,基本上高層住宅的火災防范問題就能夠得到解決。和諧社會一定要建立在群策群防基礎上?;馂目煞?,關鍵在于政府的執政保障和人民的全力支持。
關于高層建筑墜落物體的安全防范問題
現代樓宇建筑高度不斷提升,城市范圍不斷擴大,高層建筑密度不斷加大,防范高層建筑墜落物體對人身的傷害,應當納入設計安全規范。高層住宅戶外附加物體安裝工程的安全標準、安全防盜網欄、門窗玻璃等都應當規定使用年限。物體緊固裝置的使用期限、材料的選擇、防老化工藝等一定要有嚴格的規定。不然,一旦發生高空物體墜落事故,會危及行人的人身生命以及財產安全,其后果是不堪設想的。
一、高層建筑的主要戶外設施
隨著現代化大都市的高速發展和人口密度的不斷增長,建立高層建筑墜落物體對人身造成傷害的安全防范措施已迫在眉睫。城市高層住宅建筑外加附屬物體包括:
(1)居民使用的戶外空調主機。
(2)防盜門窗護網。
(3)門窗玻璃。
(4)企業的戶外廣告、招牌匾額。
(5)戶外照明及通訊裝置。
(6)戶外門窗遮陽遮雨用具。
二、易碎易墜落物品
(1)門窗及玻璃。
(2)戶外照明燈具。
(3)戶外廣告的照明燈具。
(4)企業招牌匾額的易老化針織類物品。
(5)易老化遮陽遮雨材料。
三、戶外施工過程中易墜落的物體
(1)戶外空調以及固定金屬架。
(2)戶外廣告金屬架。
(3)企業戶外廣告招牌匾額的金屬框架。
(4)施工過程中的攀爬吊裝以及裝修設施。
(5)施工過程中起吊的戶外工程物體(戶外空調,防盜門窗護欄,戶外廣告金屬結構架)。
(6)戶外遮陽遮雨金屬架。
四、高層建筑頂端的通訊發射接收設施
(1)企業通訊專用設備。
(2)信息產業收發信息設施。
(3)衛星通信接收設備。
(4)戶外民用天線。
五、高層建筑的水暖設備
(1)原高層建筑供暖系統的終端設備。
(2)冷卻塔,高水位水箱。
六、高層建筑所安裝的太陽能裝置
(1)民用以及企業用太陽能供暖設備。
(2)民用及企業用太陽能供電裝置。
二、高層建筑戶外物體墜落的主要因素
關于高層建筑附加物體的高空墜落安全防范措施問題,到目前為止,國家還沒有納入高層建筑的設計規范。大自然的風災和人為的事故以及氧化作用是導致高層建筑附加物體墜落的主要原因,包括:
(1)高等量級別的颶風災害,可導致高層建筑的門窗玻璃以及廣告匾額墜落。
(2)戶外空調系統的主機,由于固定結構在長時間的氧化學反應下失去作用,從而造成物體墜落事故。
(3)高層建筑外加附屬設備的金屬部分,在大自然有害氣體的侵蝕下,產生老化損壞墜落。
(4)由于施工質量低劣而造成的人為物體墜落。
在自然災害中,風災所造成的物體墜落是主要因素。
高層建筑戶外附屬設施墜落的安全防范措施
(1)設立高層建筑戶外附屬設備安裝標準。
(2)加強高層建筑玻璃幕墻以及門窗玻璃的安全防護規范措施。
(3)在高層建筑最底層的四周,增加預防高空物體墜落的外延結構,或增加每一棟高層建筑的底層四周防墜落物體的金屬結構設施。
(4)將用于戶外附屬設施固定的金屬防腐材料納入高層住宅設計規范。
(5)增加空調外掛主機的預留外延建筑結構平臺或體外凹式墻體空間。
(6)設立高層建筑地面的墻體四周外延防護欄,建筑墻體與外延防護欄的安全距離標準為3米。
(7)在可能的情況下,統一實施中央空調制冷采暖系統。
(8)設立城區高層建筑物體墜落安全防范巡查機構,制定高空物體墜落安全防范條例。
(9)城市居民社區委員會實施高層建筑物體墜落安全防范責任制度,健全施工企業檔案登記工作。
根據調查,中國在高層建筑設計標準中,還沒有制定出有關高層建筑附屬設施墜落安全事故的防范措施。隨著人類住宅建設的不斷增高,預防高層建筑附加設施墜落的安全事故問題已迫在眉睫。國家建委、房管機構、設計院所、人防工程委員會等相關部門應當盡快制定出關于中國城區高層建筑預防墜落物體的安全應急方案和設計標準,以確保人民生命財產的安全,將高層建筑物體墜落安全因素納入建筑設計規范,或納入城市安全管理防范監理系統。
鋼結構如何進行抗震設計?
抗震設計基本要求
1、鋼結構房屋結構類型常見的鋼結構房屋的結構體系有框架結構、框架一支援結構、框架一抗震墻板結構、簡體結構以及巨型框架結構等。鋼結構房屋的抗震性能的優劣取決于結構的選型,進行實際工程設計時,需要綜合考慮多種因素進行方案的優化,在優化過程中確定其適宜的結構體系。
2、鋼結構房屋結構布置原則
鋼結構房屋的結構體系和結構布置的選擇關系到結構的安全性、適用性和經濟性。和其他類型的建筑結構一樣,多高層鋼結構房屋應盡量采用規則的建筑方案。當結構體型復雜、平立面特別不規則時,可按實際需要在適當部位設置防震續,從而形成多個較規則的抗側力結構單元。由于鋼結構可耐受的結構變形大于混凝土結構,一般來說,不宜設抗震縫,必須設置時,抗震縫寬應不小于相應鋼筋混凝土結構房屋的1.5倍。
3、 鋼結構房屋適用的最大高度和高寬比
根據結構總體高度和抗震設防烈度確定結構類型和最大適用高度。結構的高寬比是影響結構整體穩定性和抗震性能的重要參數,它對結構剛度、側移和振動形式有直接影響。高度比指房屋總高度與平面較小寬度之比。高寬比值較大時,一方面使結構產生較大的水平位移及P—A效應,還由于傾覆力矩使柱產生很大的軸向力。因此,需要對鋼結構房屋的最大高寬比制定限值,不宜大于合理的限值,超過時應進行專門研究,采取必要的抗震措施。
抗震設計的一般方法
鋼材基本屬于各向同性的均質材料,且質輕高強、延性好,是一種很適合于建筑抗震結構的材料,在地震作用下,高層鋼結構房屋由于鋼材材質均勻,強度易于保證,所以結構的可靠性大;輕質高強的特點使得鋼結構房屋的自重輕,從而所受地震作用減??;良好的延性使結構在很大的變形下仍不致倒塌,從而保證結構在地震作用下的安全性。但是,鋼結構房屋如果設計和制造不當,在地震作用下,可能發生構件的失穩和材料的脆性破壞或連接破壞,使鋼材的性能得不到充分發揮,造成災難性后果。因此高層鋼結構房屋的抗震設計就顯得非常重要和必要。
1、建筑場地在選擇建筑場地時,應根據工程需要,掌握地震活動情況和工程地質的有關資料,對建筑場地做出綜合評價。宜選擇對建筑抗震有利的地段,如開闊平坦的堅硬場地土或密實均勻的干硬場地土等地段,避開對建筑抗震不利的地段,如軟弱場地土、易液化土、條狀突出的山嘴、高聳孤立的山丘,非巖質的陡坡、采空區、河岸和邊坡邊緣等地段。
2、地基和基礎為了避免建筑物不均勻沉降而導致結構產生裂隙、甚至傾斜,使結構構件過早進入塑性區,同一結構單元不應設置在性質截然不同的地基土上,不宜部分采用天然地基,部分采用樁基;地基有軟弱粘性土、可液化土或嚴重不均勻土層時,應加強基礎的整體性和剛性。
3、平面和立面布置為了避免地震時建筑發生扭轉和應力集中或塑性變形集中而形成薄弱環節,建筑平面、立面布置宜規則、對稱,質量分布和剛度變化宜均勻。但不設置抗震縫時,應采用與實際情況相符合的計算模型,設置抗震縫時,應將建筑物分割成規則的結構單元。我國《抗震規范》對高層鋼結構房屋的最大適用高度和鋼結構房屋的最大高寬比都有規定:
(1)、結構體系應具有明確的計算簡圖和合理的地震作用傳遞途徑;應有多道抗震設防防線,避免因部分結構或構件失效而導致整個體系喪失抗震能力或喪失對重力的承載能力;應具備必要的承載能力,良好的變形能力和耗能能力;應具有合理的剛度分布和承載力分布,避免因局部削弱或突變而形成薄弱部位,產生過大的應力集中或塑性變形集中,對可能出現的薄弱部位,應采取措施提高其承載能力。
(2)、在抗震結構體系中,應使結構構件和連接部位具有良好的延性,避免脆性破壞,提高抗震結構的整體變形能力。因此,鋼結構構件應合理控制尺寸,防止局部失穩或整體失穩,如對梁翼緣和腹板的寬厚比和高厚比都作了明確規定。此外,還應加強各構件之間的連接,以保證結構的整體性,抗震支承系統應保證地震作用時結構的穩定。
(3)、對于女兒墻、圍護墻、雨篷、封墻等非結構構件,應使其與主體結構有可靠地連接和錨固,避免地震時倒塌傷人,產生附加震害;圍護墻、隔墻等與主體結構的連接,應避免設置不當而導致主體結構破壞;應避免吊頂塌落及懸吊較重的裝飾物墜落,不可避免時應采取可靠措施。
隨著人們對地震的不斷認識,為防止出現嚴重的地震的嚴重災害,造成財產損失和生命傷亡。人們對高層鋼結構房屋的抗震要求不斷提高。本文闡明了設計人員進行高層鋼結構房屋抗震設計時,應首先從概念設計著手,制定比較合理的設計方案等,確保房屋抗震設防目標的實現。
以上由中達咨詢搜集整理
更多關于工程/服務/采購類的標書代寫制作,提升中標率,您可以點擊底部官網客服免費咨詢:
高層鋼結構抗震的計算?
1.地震作用計算
結構自振周期,在初步設計時,基本周期可按經驗公式估算:式中n―建筑物層數(不包括地下部分及屋頂小塔樓)。
采用底部剪力法計算水平地震作用。鋼結構的阻尼比較小,高層可取0.02,多層可取0.035.
2.地震作用下內力與位移計算
(1)多遇地震作用下
結構在第一階段多遇地震作用下的抗震設計中,其地震作用效應采取彈性方法計算:可根據不同情況,采用底部剪力法、振型分解反應譜法以及時程分析法等方法。
(2)罕遇地震作用下
高層鋼結構第二階段的抗震驗算應采用時程分析法對結構進行彈塑性時程分析。
3.構件的內力組合與設計原則
(l)內力組合
在抗震設計中,一般高層鋼結構可不考慮風荷載及豎向地震的作用,對于高度大于60m的高層鋼結構須考慮風荷載的作用,在9度區尚須考慮豎向地震作用。
(2)設計原則
框架梁、柱截面按彈性設計。同時,將框架設計成強柱弱梁體系。
4.側移控制
在小震下(彈性階段),過大的層間變形會造成非結構構件的破壞,而在大震下(彈塑性階段),過大的變形會造成結構的破壞或倒塌,因此,應限制結構的側移,使其不超過一定的數值。
更多關于工程/服務/采購類的標書代寫制作,提升中標率,您可以點擊底部官網客服免費咨詢:
多高層結構的彈塑性分析
多高層結構的彈塑性分析
“三水準抗震設防,兩階段抗震設計”是我國現階段的基本抗震設計思想。與“大震不倒”的第三水準設防目標相對應,需要對建筑結構進行第二階段的抗震設計,即需要對一些規范所規定的建筑結構進行罕遇地震作用下的彈塑性階段變形驗算。
1 結構彈塑性分析的規范要求
目前主要有三本現行規范設計到罕遇地震作用下的彈塑性階段設計:
1、《建筑抗震設計規范》(GB 50011—2008)
2、《高層建筑混凝土結構技術規程》(JGJ 3—2002)
3、《高層民用建筑鋼結構技術規程》(JGJ99—98)
這幾本規范中對于彈塑性階段設計均有著較為明確的規定,例如《建筑抗震設計規范》(GB 50011—2008)第3.4.3條、第3.6.2條、第5.1.2條、第5.5.2條、第5.5.3條、第5.5.4條、第5.5.5條中均涉及到了罕遇地震作用下的彈塑性階段變形驗算。
“抗震規范”第3.6.2條規定:“不規則且具有明顯薄弱層部位可能導致地震時嚴重破壞的建筑結構,應按本規范有關規定進行罕遇地震作用下的彈塑性變形分析?!?/p>
“抗震規范”第5.5.2條規定了何種結構“應”或“宜”進行罕遇地震作用下薄弱層的彈塑性變形驗算。
1
下列結構應進行彈塑性變形驗算:
(1)8度Ⅲ、Ⅳ類場地和9度時,高大的單層鋼筋混凝土柱廠房的橫向排架;
(2)7~9度時樓層屈服強度系數小于0.5的鋼筋混凝土框架結構;
注:“樓層屈服強度系數”參見SATWE計算結果文件SAT-K.OUT
(3)高度大于150米的鋼結構;
(4)甲類建筑和9度時乙類建筑中的鋼筋混凝土結構和鋼結構;
(5)采用隔震和消能減震設計的結構。
2
下列結構宜進行彈塑性變形驗算:
(1)(規范中)表5.1.2-1所列高度范圍且屬于表3.4.2-2所列豎向不規則類型的高層建筑結構;
(2)7度Ⅲ、Ⅳ類場地和8度乙類建筑中的鋼筋混凝土結構和鋼結構;
(3)板柱—抗震墻結構和底部框架磚房;
(4)高度不大于150m的高層鋼結構
對于罕遇地震作用下的結構彈塑性變形驗算的方法,抗震規范5.5.3條給出了明確的規定:不超過12層且層剛度無突變的鋼筋混凝土框架結構、單層鋼筋混凝土柱廠房可采用簡化分析方法;除此之外的其他建筑結構,均可采用彈塑性時程分析方法或靜力彈塑性(推覆)分析方法。
可見對于大量的已建、在建和擬建的建筑結構,尤其是高層、超高層建筑結構,進行彈塑性階段抗震分析是十分必要的。
2 彈塑性分析軟件EPDAEPSA簡介
目前,設計人員可用于建筑結構彈塑性分析的計算工具是十分有限的,所以一般只能選用通用有限元分析軟件來進行結構的彈塑性計算。通用有限元軟件有其自身的優勢,如計算功能強大、計算性能相對穩定,用于特別重要結構的分析還是可以考慮的,但對于大多數建筑結構的設計、校核而言還是顯得過于復雜,而且對于一些建筑結構所特有的復雜性而言,通用有限元軟件未必能夠做到簡單、適用、可靠。
經過幾年的努力,中國建筑科學研究院PKPMCAD工程部在原有的線彈性分析程序的基礎上,對建筑結構彈塑性分析軟件進行了探索研究,適應規范要求推出了建筑結構彈塑性動力、靜力分析軟件EPDAEPSA。目前的EPDAEPSA軟件提供了兩種空間模型彈塑性分析方法,一種是彈塑性動力時程分析方法EPDA(Elastic and Plastic Time-history Dynamic Analysis);另一種是彈塑性靜力分析方法EPSA(Elastic and Plastic Static Analysis),即通常所說的靜力推覆分析方法(Push-Over Analysis)。
EPDAEPSA程序具備如下特點:
(1)完全空間化的計算模型,EPDAEPSA程序是完全基于空間模型而設計的,盡量做到計算模型能夠真實地模擬結構的實際受力狀態,最大限度地避免了計算模型所帶來的計算誤差。
(2)前、后處理功能強,自動讀取PMCAD的幾何信息、荷載信息,SATWE、TAT、PMSAP軟件模塊的設計分析結果,對鋼筋砼構件,自動讀取計算配筋,用戶可以交互修改生成實配鋼筋;充分利用了PKPM系列軟件的CFG圖形操作功能。
(3)EPDAEPSA程序不但提供了彈塑性時程分析功能,而且提供了靜力彈塑性分析功能。一些漸趨成熟的罕遇地震分析方法和近年來成為研究熱點的罕遇地震分析方法均得到一定程度的體現。
(4)EPDAEPSA程序所提供的材料本構關系力求做到準確和符合中國規范。鋼材的本構關系采用雙折線的彈塑性本構關系,用戶可以自由控制塑性階段的楊氏模量折減?;炷恋谋緲嬯P系給出了雙折線和三折線兩種形式,可以考慮材料的受拉開裂、裂縫閉合、壓碎退出工作等混凝土材料所特有的復雜特性;其中的三折線滯回本構關系是按照我國現行混凝土規范采用等能量方法得到的,有著較高的擬合精度。
(5)EPDAEPSA程序采用了目前階段可以使用的較為先進的梁單元模型。梁、柱、支撐等一維構件采用纖維束模型模擬,纖維束模型的適用性好,不受截面形式和材料限制,被認為是一種較為精確的桿系有限單元模型。EPDAEPSA程序中通過綜合提高程序計算效率,較好的避免了該模型計算工作量大的問題;同時,程序中給出了直觀的桿系單元端部塑性鉸判斷方法。
(6)剪力墻的彈塑性性質模擬是混凝土結構彈塑性分析的難題。EPDAEPSA程序將SATWE、TAT、PMSAP程序中使用的彈性墻單元進行了推廣,考慮其彈塑性性質,使用彈塑性墻單元來模擬剪力墻的彈塑性性質。這種單元計算效率高,精度好,可以較真實地分析和顯示剪力墻的彈塑性狀態,相對于一些簡化的墻單元彈塑性性質考慮方法有著明顯的優勢。
(7)為了提高程序的計算效率,EPDAEPSA程序的線性方程組解法在給出了通常的LDLT解法的同時,還給出了波前法和兩種較為高效的有預處理功能的共軛斜量法(PCG)解法,用于結構的靜、動力彈塑性分析,使得程序的求解效率明顯提高。
(8)彈塑性時程分析時的動力微分方程組解法給出了Newmark-β法和Wilson-θ 法兩種直接積分方法;非線性方程組的解法采用增量法與Newton-Raphson或modified Newton-Raphson方法相結合。
(9)靜力彈塑性分析程序EPSA可以很好的解決病態方程的求解問題,程序可以計算到荷載—位移曲線的下降段。
(10)EPDAEPSA程序可以考慮P-Δ效應影響。
3如何有效地使用彈塑性分析軟件EPDAEPSA
考慮到建筑結構設計人員對彈塑性分析概念的了解程度,在EPDAEPSA程序的開發過程中,開發者在做到計算模型合理、計算方法可靠的同時,盡量減少用戶的干預工作量,使得用戶可以較為順利的完成彈塑性分析工作,在使用EPDAEPSA計算完成后,用戶如何有效、合理的利用程序的計算結果是十分重要的。這里進行一些必要的強調。
彈塑性分析的目的是了解結構的彈塑性性能,得到結構在罕遇地震下的抗倒塌能力。
我國現行規范中規定的彈塑性階段主要是指彈塑性階段的變形驗算,也就是說需要將計算(如利用EPDA或EPSA程序)得到的結構在罕遇地震作用下最大層間位移角與規范所規定的層間位移角限值進行比較,滿足限值要求則通過彈塑性階段的變形驗算。
EPDA程序得到罕遇地震作用下最大層間位移角的方法如下:
(1)選擇多條天然地震波或人工地震波。
通過計算得到每條地震波作用下各個結構樓層的平均和最大層間位移角,進而得到多條地震波的平均層間位移角均值
確定結構的薄弱樓層,得到多條地震波作用下的樓層平均層間位移角均值。
將薄弱樓層的層間位移角均值與規范限值進行比較,確定是否滿足規范要求。
“抗震規范”中對于彈塑性分析時的地震波選擇原則并沒有明確規定,我們建議用戶參考“抗震規范”5.1.2條的規定選取彈塑性分析時的地震波:“采用時程分析法,應按建筑場地和設計地震分組選用不少于兩組的實際強震記錄和一組人工模擬的加速度時程曲線,其平均地震響應系數曲線應與振型分解反應譜法所采用的地震影響系數曲線在統計意義上相符?!睂τ谝恍┙Y構的彈塑性反應明顯較小的地震波,用戶應該剔除。
(2)給定側推荷載形式,進行靜力推覆分析。
使用EPSA程序提供的抗倒塌驗算功能得到結構的需求層間位移角。
將需求層間位移角規范限值進行比較,確定是否滿足規范要求。
除了進行規范所規定的彈塑性階段的變形驗算以外,用戶還可以利用EPDAEPSA程序從以下幾個方面來了解結構的彈塑性性能:
(1)確定結構的薄弱層。
薄弱層是一個相對的概念,一個結構并不是只有一個薄弱層,有時有多個或連續幾個薄弱層。利用EPDAEPSA程序可以采用如下的一些原則來確定薄弱層部位:
? 最大層間位移、最大有害層間位移所在的樓層;
? 層間位移、有害層間位移超過規范限值的樓層;
? 結構構件塑性鉸、剪力墻破壞點比較集中的部位;
? 結構局部變形較大的部位;
? 結構彈塑性反應力突變的部位。
(2)確定薄弱構件
EPDA程序和EPSA程序均提供了桿件的塑性鉸顯示和剪力墻的彈塑性狀態顯示功能。通過這些功能用戶可以清楚的了解到結構構件在地震波作用過程中或靜力推覆分析過程中結構的彈塑性發展情況,指導用戶有選擇的加強原結構設計,如增大構件尺寸或增大實配鋼筋。
最后,需要強調一下EPDAEPSA的計算時間問題。前面提到為了盡量符合實際的受力情況,EPDAEPSA程序采用了空間計算模型,對于實際的高層建筑結構而言,這將使得結構模型達到幾萬計算自由度。雖然我們從程序的角度采取了很多措施來提高計算效率,但計算一條地震波的時間通常要幾個小時,甚至十幾個小時的時間。為了提高EPDAEPSA程序的使用效率,我們對用戶提出如下一些建議:
(1)去掉不必要的附屬結構、構件。如去掉可以作為上部結構嵌固端的地下室,去掉對整體結構抵抗地震作用沒有太多貢獻的擋土墻、次梁、裙房等附屬結構,盡量只保留主要的結構抗側力構件。
(2)應該首先使用EPDAEPSA程序對結構進行試算,如選擇某條地震波中的1~2秒時間段進行EPDA計算或選擇幾個加載步進行EPSA計算,在確定計算沒有問題后再進行實際計算。通過試算,用戶還可以對程序的計算耗時有所了解。
(3)計算前應該詳細檢查輸入參數是否正確,以免計算完成后有反復。
(4)EPDA程序一次計算盡量不要選太多的地震波,一般應小于3條地震波,最好是一次只計算一條波,以免耗費較多的計算時間后沒有得到任何計算結果。需要強調的是,EPDA一次計算完成后,如果用戶需要選擇其他的地震波繼續計算,需要新建工程目錄進行計算,以免原來的計算結果被程序刪除。如果硬盤空間較小,可以選擇只輸出文本文件。
(5)規范中對于所選擇地震波的持時是有一定要求的:但是某些地震波,尤其是一些人造地震波在幾十秒的持時中,地震波遠離峰值的前后段加速度很小。一些試算表明,將地震波中遠離峰值且加速度很小的部分去掉,對于正確得到最大層間位移角沒有多大影響。建議將地震波的計算步數保持在1000步左右為宜。
(6)EPSA程序在結構接近承載力極限狀態時耗時是較多的,如果用戶只是希望得到需求位移,可以通過參數選擇,使得結構的能力曲線穿越需求譜即可。
(7)使用EPDAEPSA程序計算時,盡量選擇較快的計算機在整塊的空閑時間(如晚上)進行;在計算過程中盡量不要在該計算機上進行其他操作;并且應“屏幕保護程序”選取“無”且在“電源管理”中的“選擇電源使用方案”框內的“關閉監視器”和“關閉硬盤”項選取“從不”,以便觀察程序進程。
高層建筑的抗震設計與抗震結構
高層建筑的抗震設計與抗震結構【1】
摘要:近年來隨著我國建筑工程事業發展的不斷進步,人們對建筑工程施工質量有了更高的要求。
汶川地震給我國建筑工程事業敲響了警鐘,我國建筑工程設計未來的發展要更加注重抗震設計以及抗震結構的構建,努力通過抗震設計提高建筑工程的穩固性,保障用戶的生命財產安全。
關鍵詞:建筑工程 抗震設計 抗震結構安全
1對建筑工程震能力產生影響的主要因素
1.1建筑結構的抗震設計標準
建筑結構抗震設計標準要根據國家對不同地區地震可能發生的情況以及對地震的危害程度所進行的初步預測來確定不同地區的基本設防烈度。
設防烈度的確定是對抗震標準進行設計的主要參考依據,只有抗震烈度測量預測的準確性,才能夠保障抗震設計標準的科學性與正確性。
建筑施工單位根據抗震設計標準以及工程項目開發對住宅使用性能的要求,來進行抗震設計,提高建筑物抗震設計的烈度,設計烈度與建筑物的抗震能力成正比,與建筑工程造價成反比。
1.2建筑工程抗震設計是否合理
所謂抗震設計主要是對建筑的結構形式進行合理的設計,并對建筑結構抗震措施加以選擇,保障建筑結構具有穩定的抗震性,在地震災害威脅的情況下要確保建筑結構不倒。
高層建筑物對抗震設計有著比普通建筑更高的設計要求,通常選擇現澆剪力墻結構、框架- 剪力墻結構作為高層建筑物的首選結構類型。
這種類型的建筑結構強度高、在外力的強烈作用下,能夠維持建筑結構的平穩性,抗震效果非常明顯。
建筑工程抗震設計的合理性是確保建筑抗震性能的基本保障。
1.3建筑工程施工質量
建筑工程施工質量直接影響建筑物的使用性能,在地震振幅的強烈刺激下,建筑物的穩固性很難得到保障,為此必須對建筑物施工質量進行嚴格的控制,規范建筑施工工序,加強質量監督與檢驗工作,提高建筑物的整體質量,保障建筑物的高抗震性。
2選擇適合的抗震結構與高質量的建筑材料
2.1建筑結構體系對建筑抗震性能的重要作用
現階段在我國建筑結構體系中主要包含了框架結構體系、框架―剪力墻結構體系、剪力墻結構體系與筒體結構體系等主要結構體系表現形式。
這些結構體系根據建筑物的實際需要被廣泛的運用到高層建筑物中。
而目前國外在地震多發區,已經開展廣泛的采用鋼結構體系,作為提高建筑結構防震的主要結構體系,我國目前所采用的多為鋼筋混凝土結構,其抗震性能遠遠比不上鋼結構的抗震性能。
鋼結構在強度、韌性以及延展性上具有明顯的優勢。
通過對地震區建筑房屋的倒塌情況進行調查我們可以發現,鋼結構建筑物的倒塌機率是最小的。
我國工程建造開發者在進行高層建筑物設計時,為了節省用鋼數量,往往采用框架- 核心筒體系。
在混合結構震層中所產生的剪應力的八成以上都由內部的混凝土來承擔。
鋼筋混凝土結構在外力的作用下容易出現彎曲變形,為了減少建筑結構的側移,往往需要采用小的鋼結構對框架-核心筒結構加以輔助,這不但沒能達到節省建筑鋼材用量的目的,還增加了建筑結構的負擔,不利于建筑整體結構穩固性的發揮,為此我國要積極推進鋼結構在建筑領域的應用。
2.2建筑材料對建筑物抗震效果的影響與應用
建筑材料的使用性能對建筑物的質量有著決定性的影響,而高質量的建筑物又具有良好的抗震效果,為此若想提高建筑物的抗震性,首先要確保建筑材料的質量。
在對建筑材料進行選擇時,通常要選擇強度高、安全性好,以及具有良好耐久性的建筑材料,研究實踐表明,高性能的建筑材料在提高建筑結構的使用性能與使用壽命方面具有不可替代的作用。
混凝土是目前我國建筑工程領域所普遍運用的人工石材,它產生于1824年,它的出現極大的改變了世界建筑工程領域的.發展狀況,為促進我國建筑工程領域的發展起到了極大的推動作用。
但混凝土建筑材料卻屬于脆性材料,從建筑結構抗震的角度進行分析,混凝土材料不利于建筑結構的抗震性,為此不應作為結構性材料應用到建筑結構當中。
為解決這一問題,建筑工程領域展開了廣泛的研究與討論。
目前主要通過對建筑結構進行科學合理設計以及采用鋼筋來化解混凝土的脆性。
同時也可以通過對混凝土自身的性能加以改變來實現對混凝土脆性的改良,達到提高混凝土材料抗震效果的目的。
通常狀況下對混凝土自身的性能進行改良,提高混凝土建筑結構的抗震性能主要從以下幾個方面加以著手:首先,要對混凝土攪拌過程中的用水量進行嚴格的控制,水對混凝土的水化反應以及混凝土的和易性都產生至關重要的影響,決定混凝土的性能,為此在混凝土加工、攪拌、運輸、使用的全過程要通過會混凝土用水量的控制,來確?;炷恋膹姸燃捌淠途眯?。
然而為了確?;炷两ㄖY構的抗震性能,我們不能一味的增加混凝土的強度,因為混凝土強度與極限壓成反比,當混凝土的強度達到一定高度時,在外力作用下一旦混凝土遭到破壞,此時混凝土的脆性特征就會變得更加明顯,為此必須在考慮增強混凝土強度的同時要考慮增強混凝土的韌性,只有這樣才能夠確?;炷辆哂休^好抗震性能。
提高混凝土的使用性能還可以采用聚合物改性,這樣可以顯著提高混凝土的抗滲性、抗侵蝕能力,改善漿體與集料界面的結合,而且摻加達到一定量時,脆性的混凝土開始呈現聚合物良好的延性特征,在國際上已經開發成功的超高強水泥彈簧,即是該應用的一個極端例證。
在保證混凝土足夠的堿度防止鋼筋銹蝕破壞以及碳化破壞的同時,適宜摻加摻合料可降低混凝土結構中主要存在于孔隙和漿體與集料界面的氫氧化鈣的含量,改善界面結構,提高混凝土的抗滲性。
集料質量也是影響混凝土質量、尤其是混凝土的耐久性的重要因素。
例如,用堿活性集料或含有害組分的集料制備的混凝土不僅可導致混凝土耐久性的降低和壽命的縮短,而且可能在突發災害中加速破壞而導致巨大損失。
2003年土耳其地震后對倒塌建筑調查的結果表明,由于不當使用含氯離子高的海砂作為集料制備混凝土是導致增強鋼筋加速銹蝕而使混凝土建筑在震中倒塌的主要原因。
當然,從通用水泥自身也可提出許多有益于提高混凝土耐久性的要求,如適宜控制水泥比表面積和水化熱、降低水泥中氯離子含量、堿含量等。
此外,還可以從根本上調整水泥品種,例如選用低水化放熱、高后期強度、尤其是抗折強度高、抗侵蝕性好的低熱硅酸鹽水泥,即高貝利特水泥,對于重點工程建設是一種更好的技術途徑。
高貝利特水泥低熱高強的特性表明,它是配制高強高性能混凝土的理想的膠凝材料,所配制的高貝利特大體積混凝土抗裂性優越、且具有良好的體積穩定性和優越耐久性,已在國家重點工程應用中得到證明。
3結束語
良好的抗震設計與抗震結構對建筑物抵抗地震災害的威脅起到良好的保護作用,為確保我國建筑使用者的生命財產安全提供了可靠的保障,我國必須努力通過合理的設計創造出高性能的抗震結構,提高我國建筑物的抗震效果,對人們的生命財產安全實施全面的保護,避免汶川地震的慘劇再次上演。
參考文獻:
[1] 王麗霖.我國高層建筑抗震結構設計初探[J].山西建筑,2011,(03) .
[2] 和佳一.淺談高層建筑結構抗震設計[J].中國新技術新產品,2011,(12)
[3] 陳維東.高層建筑結構抗震設計存在的問題及其對策[J].中國高新技術企業, 2009,(05).
帶轉換層高層建筑結構非抗震與抗震設計的區別【2】
摘要:鑒于高層建筑結構的多樣性,轉換層的結構設計,應該針對高層建筑的結構類別,進行區別性方案的設計,通過精心組織施工,高要求控制模板、鋼筋和混凝土等的施工程序,提供這些施工程序的有利條件,降低施工難度,為高層建筑轉換層的結構設計奠定基礎。
而抗震設計與非抗震設計在具體結構構件梁、柱及剪力墻的構造配筋上均存在一定區別,結構設計時應進行區分。
本文就這些問題進行了分析探討。
關鍵詞:帶轉換層;高層建筑;抗震設計
前言
隨著高層建筑的迅速發展,以及對建筑結構多功能的要求,帶轉換高層結構的應用越來越多,且轉換層的設置位置也越來越高。
六度抗震地區與非抗震地區在帶轉換層高層建筑結構設計上的存在區別,不同區域的建筑結構設計,根據抗震等級不同也存在區別,對不同地區進行整體結構概念設計,應避免在實際設計工程中造成不必要的浪費或者安全度偏大,以達到節省建筑工程造價的目的。
一、帶轉換層結構的設計原則
帶轉換層建筑結構總體設計應遵循的如下原則:首先,傳力直接,避免多次轉換。
布置轉換層上下主體豎向結構時,要盡量使水平轉換結構傳力直接,通過結構的合理布置,使不落地的剪力墻通過轉換托梁直接傳給豎向承重構件,盡可能的避免轉換次梁及水平多級轉換,實現傳力路勁的最短化。
其次,強化下部、弱化上部。
要保證底部大空間有適宜的剛度、強度、延性和抗震能力,要有意識的強化轉換層下部主體結構剛度,弱化轉換層上部主體結構的剛度,使得轉換層上下部主體結構的剛度及變形特征盡量接近,以避免出現薄弱層。
再次,計算全面準確。
必須將轉換結構作為整體結構中一個重要組成部分,采用符合實際受力變形狀態的正確計算模型進行三維空間整體結構計算分析。
采用有限元方法對轉換結構進行局部補充計算時,轉換結構以上至少取2層結構進入局部計算模型,同時應計及轉換層及所有樓蓋平面內剛度,計及實際結構三維空間盒子效應,采用比較符合實際邊界條件的正確計算模型。
二、建筑結構平面布置
關于建筑物的結構平面布置,僅在《高層建筑混凝土結構技術規程》表4.3.3中對建筑物在考慮地震作用時的平面長寬比以及局部凹凸進行明確規定;并且在4.3.5條中對建筑的位移比和周期比進行嚴格的限制。
非抗震設計時,由于對周期比沒有嚴格的限制,故在設計轉換層以上的小開間住宅部分的豎向構件時,可以只按照豎向構件的承載力進行設計;作抗震設計時,為了使周期比滿足規范要求的限值,必須對建筑物周圍的豎向構件進行加強處理,這就人為地增大了轉換層上部的建筑物結構剛度,也增加了豎向構件的數量或者截面,同時也會引起轉換層下部剛度相應增大。
三、建筑結構豎向布置
考慮地震作用下,僅在《高層建筑混凝土結構技術規程》中4.4.2和4.4.3條對建筑物的側向剛度進行限制,保證建筑物的側向剛度的連續。
4.4.5條對建筑物的豎向收進和外挑進行限制。
(1)底部大空間為1層時,可近似采用轉換層上、下層結構等效剪切剛度比γ表示轉換層上、下層結構剛度的變化,γ宜接近1,非抗震設計時γ不應大于3,抗震設計時γ不應大于2。
(2)底部大空間層數大于1層時,其轉換層上部與下部結構的等效側向剛度比γe宜接近1,非抗震設計時γe不應大于2,抗震設計時γe不應大于1.3。
由于轉換層結構上部建筑多為住宅,根據建筑住宅使用功能的要求,房間分隔較小且對結構梁高進行限制,故造成上部住宅部分的豎向構件柱子或短肢剪力墻數量較多,梁較密。
并且轉換層上部住宅部分層高一般比下部大開間的商場部分小得多。
這些都是造成轉換層上部結構剛度遠遠大于下部結構剛度的客觀原因。
為了增加下部結構剛度,只能在適當位置處增加豎向構件或原豎向構件的截面尺寸。
上、下部剛度越要求接近,則增加的下部豎向構件越多或者截面越大。
四、結構構件承載力設計的區別
《高層建筑混凝土結構技術規程》4.7.1條中規定:無地震作用時,構件承載力設計值大于等于結構作用效應組合的設計值與結構重要性系數的乘值(結構重要性系數的取值在1.~1.1之間);有地震作用組合時,構件承載力設計值大于等于結構作用效應組合的設計值與結構構件承載力抗震調整系數的乘值(結構構件承載力抗震調整系數的取值在1.0~1.33之間)。
以上分析均針對非抗震設計和抗震設計在結構概念設計上的區別,屬于確定建筑方案前需要考慮的結構體系對建筑物的總體影響,是非抗震設計和抗震設計在性能設計上的根本區別,需要在建筑方案確定前進行經濟綜合性比較分析。
整體結構概念設計是實現非抗震結構性能經濟性設計的根本方向。
五、具體建筑構件單項比較分析
1、框支梁
梁上、下部縱向鋼筋的最小配筋率,非抗震設計時不應小于0.30%;抗震設計時,特一、一和二級不應小于0.60%、0.50%和0.40%;加密區箍筋最小面積含箍率在非抗震設計時不應小于0.9ft/fyv;抗震設計時,特一、一和二級不應小于1.3ft/fyv、1.2ft/fyv和1.1ft/fyv。
梁截面高度在抗震設計時不應小于計算跨度的1/6,非抗震設計時不應小于計算跨度的1/8;框支梁截面組合的最大剪力設計值應符合下列要求:
無地震作用組合時:V≤0.2βcfcbh0;
有地震作用組合時:V≤0.15βcfcbh0/γRE。
2、框支柱
框支柱截面組合的最大剪力設計值應符合下列要求:無地震作用組合時,V≤0.2βcfcbh0;有地震作用組合時,V≤0.15βcfcbh0/γRE。
柱截面寬度,非抗震設計時不宜小于400mm,抗震設計時不應小于450mm;柱截面高度,非抗震設計時不宜小于框支梁跨度的1/15,抗震設計時不宜小于框支梁跨度的1/12;非抗震設計時,框支柱宜采用復合螺旋箍或井字復合箍,箍筋體積配箍率不宜小于0.8%,箍筋直徑不宜小于10mm,箍筋間距不宜大于150mm。
3、剪力墻
部分框支剪力墻結構,剪力墻底部應加強部位墻體的水平和豎向分布鋼筋最小配筋率,抗震設計時不應小于0.3%,非抗震設計時不應小于0.25%;錯層處平面外受力的剪力墻,其截面厚度,非抗震設計時不應小于200mm,抗震設計時不應小于250mm,并均應設置與之垂直的墻肢或扶壁柱;抗震等級應提高一級采用。
錯層處剪力墻的混凝土強度等級不應低于C30,水平和豎向分布鋼筋的配筋率,非抗震設計時不應小于0.3%,抗震設計時不應小于0.5%。
結語
轉換層在高層建筑的應用必不可少,每座建筑的結構都有其自身的特點,應根據需要,選擇合適的轉換層類型。
在施工中,還用注意每一環節的施工,在了解各構件特性的基礎上,合理的發揮其長處、解決其短處,保證轉換層的質量。
參考文獻:
[1]趙西安.高層建筑結構實用設計方法[M].第3版上海: 同濟大學出版社,2013.
[2]毛華毅.淺談高層建筑結構設計的若干問題[J].山西建筑,2010,36(9):72-73.
高層鋼結構抗震設計分析?
目前,鋼結構普遍應用于各種類型的民用建筑中,在高層及超高層建筑中的應用則更為廣泛。同混凝土結構相比,鋼結構具有韌性好、強度與重量比高的優點,具有優越的抗震性能;但是,如果鋼結構房屋在結構設計、材料選用、施工制作和維護上出現問題。則其優良的鋼材特性將得不到充分的發揮,在地震作用下同樣會造成結構的局面破壞或整體倒塌。
一、高層建筑發展概括
80年代,是我國高層建筑在設計計算及施工技術各方面迅速發展的階段。各大中城市普遍興建高度在100m左右或100m以上的以鋼筋為主的建筑,建筑層數和高度不斷增加,功能和類型越來越復雜,結構體系日趨多樣化。比較有代表性的高層建筑有上海錦江飯店,它是一座現代化的高級賓館,總高153.52m,全部采用框架一芯墻全鋼結構體系,深圳發展中心大廈43層高165.3m,加上天線的高度共185.3m,這是我國第一幢大型高層鋼結構建筑。進入90年代我國高層建筑的設計與施工技術進入了新的階段。不僅結構體系及建筑材料出現多樣化而且在高度上長幅很大有一個飛躍。深圳于1995年6月封頂的地王大廈,81層高,385.95m為鋼結構,它居目前世界建筑的第四位。
二、高層鋼結構震害現象及其原因分析
鋼結構被認為具有卓越的抗震性能,在歷次的地震中,鋼結構房屋的震害要小于鋼筋混凝土結構房屋。很少發生整體破壞或倒塌現象。盡管如此,由于焊接、連接、冷加工等工藝技術以及外部環境的影響,鋼材材料的優點將受到影響。特別是因設計、施工以及維護不當,就很可能造成結構的破壞。根據鋼結構在歷次地震中的破壞形態,可能破壞形式分為以下幾類:
1、 結構倒塌
結構倒塌是地震中結構破壞最嚴重的形式。造成結構倒塌的主要原因是結構薄弱層的形成,而薄弱層的形成是由于結構樓層屈服強度系數和抗變4剛度沿高度分布不均勻造成的。這就要求在設計過程中應盡量避免上述不利因素的出現。
2、 節點破壞
節點破壞是地震中發生最多的一種破壞形式。剮性連接的結構構件一般采用鉚接或焊接形式連接。如果在節點的設計和施工中,構造及焊縫存在缺陷,節點區就可能出現應力集中、受力小均的現象,在地震中很容易出現連接破壞。梁柱節點可能出現的破壞現象主要表現為:鉚接斷裂,焊接部位位脫,加勁板斷型、屈曲,腹板斷裂、屈曲等。
3、 構件破壞
在以往所有地震中,多高層建筑鋼結構構件破壞的主要形式有支撐的破壞與失穩以及梁柱局部破壞兩種。(1)支撐的破壞與失穩。當地震強度較大時,支撐承受反復拉壓的軸向力作用,一旦壓力超出支撐的屈曲臨界力時,就會出現破壞或失穩。(2)梁柱局部破壞。對于框架柱,主要有翼緣屈曲、翼縫撕裂,甚至框架柱會出現水平裂縫或斷裂破壞。對于框架梁,主要有翼緣屈曲、腹板屈曲和開裂、扭轉屈曲等破壞形態。
4、基礎錨固破壞
鋼構件與基礎的錨固破壞主要表現為柱腳處的地腳螺栓脫開、混凝土破碎導致錨固失效、連接板斷裂等,這種破壞形式曾發生多起,根據對上述鋼結構房屋震害特征的分析可知,盡管鋼結構抗震性能較好,但在歷次的地震中,也會出現不同程度的震害。究其原因,元素是和結構設計、結構構造、施工質量、材料質量、日常維護等有關,為了預防以上震害的出現,減輕震害帶來的損失,多高層鋼結構房屋抗震設計必須嚴格遵循有關規程進行。
三、抗震設計基本要求
1、鋼結構房屋結構類型
常見的鋼結構房屋的結構體系有框架結構、框架一支援結構、框架一抗震墻板結構、簡體結構以及巨型框架結構等。鋼結構房屋的抗震性能的優劣取決于結構的選型,進行實際工程設計時,需要綜合考慮多種因素進行方案的優化,在優化過程中確定其適宜的結構體系。
2、鋼結構房屋結構布置原則
鋼結構房屋的結構體系和結構布置的選擇關系到結構的安全性、適用性和經濟性。和其他類型的建筑結構一樣,多高層鋼結構房屋應盡量采用規則的建筑方案。當結構體型復雜、平立面特別不規則時,可按實際需要在適當部位設置防震續,從而形成多個較規則的抗側力結構單元。由于鋼結構可耐受的結構變形大于混凝土結構,一般來說,不宜設抗震縫,必須設置時,抗震縫寬應不小于相應鋼筋混凝土結構房屋的1.5倍。
3、 鋼結構房屋適用的最大高度和高寬比
根據結構總體高度和抗震設防烈度確定結構類型和最大適用高度。結構的高寬比是影響結構整體穩定性和抗震性能的重要參數,它對結構剛度、側移和振動形式有直接影響。高度比指房屋總高度與平面較小寬度之比。高寬比值較大時,一方面使結構產生較大的水平位移及P—A效應,還由于傾覆力矩使柱產生很大的軸向力。因此,需要對鋼結構房屋的最大高寬比制定限值,不宜大于合理的限值,超過時應進行專門研究,采取必要的抗震措施。
抗震設計的一般方法
鋼材基本屬于各向同性的均質材料,且質輕高強、延性好,是一種很適合于建筑抗震結構的材料,在地震作用下,高層鋼結構房屋由于鋼材材質均勻,強度易于保證,所以結構的可靠性大;輕質高強的特點使得鋼結構房屋的自重輕,從而所受地震作用減??;良好的延性使結構在很大的變形下仍不致倒塌,從而保證結構在地震作用下的安全性。但是,鋼結構房屋如果設計和制造不當,在地震作用下,可能發生構件的失穩和材料的脆性破壞或連接破壞,使鋼材的性能得不到充分發揮,造成災難性后果。因此高層鋼結構房屋的抗震設計就顯得非常重要和必要。
1、建筑場地
在選擇建筑場地時,應根據工程需要,掌握地震活動情況和工程地質的有關資料,對建筑場地做出綜合評價。宜選擇對建筑抗震有利的地段,如開闊平坦的堅硬場地土或密實均勻的干硬場地土等地段,避開對建筑抗震不利的地段,如軟弱場地土、易液化土、條狀突出的山嘴、高聳孤立的山丘,非巖質的陡坡、采空區、河岸和邊坡邊緣等地段。
2、地基和基礎
為了避免建筑物不均勻沉降而導致結構產生裂隙、甚至傾斜,使結構構件過早進入塑性區,同一結構單元不應設置在性質截然不同的地基土上,不宜部分采用天然地基,部分采用樁基;地基有軟弱粘性土、可液化土或嚴重不均勻土層時,應加強基礎的整體性和剛性。
3、平面和立面布置
為了避免地震時建筑發生扭轉和應力集中或塑性變形集中而形成薄弱環節,建筑平面、立面布置宜規則、對稱,質量分布和剛度變化宜均勻。但不設置抗震縫時,應采用與實際情況相符合的計算模型,設置抗震縫時,應將建筑物分割成規則的結構單元。我國《抗震規范》對高層鋼結構房屋的最大適用高度和鋼結構房屋的最大高寬比都有規定:
(1)、結構體系應具有明確的計算簡圖和合理的地震作用傳遞途徑;應有多道抗震設防防線,避免因部分結構或構件失效而導致整個體系喪失抗震能力或喪失對重力的承載能力;應具備必要的承載能力,良好的變形能力和耗能能力;應具有合理的剛度分布和承載力分布,避免因局部削弱或突變而形成薄弱部位,產生過大的應力集中或塑性變形集中,對可能出現的薄弱部位,應采取措施提高其承載能力。
(2)、在抗震結構體系中,應使結構構件和連接部位具有良好的延性,避免脆性破壞,提高抗震結構的整體變形能力。因此,鋼結構構件應合理控制尺寸,防止局部失穩或整體失穩,如對梁翼緣和腹板的寬厚比和高厚比都作了明確規定。此外,還應加強各構件之間的連接,以保證結構的整體性,抗震支承系統應保證地震作用時結構的穩定。
(3)、對于女兒墻、圍護墻、雨篷、封墻等非結構構件,應使其與主體結構有可靠地連接和錨固,避免地震時倒塌傷人,產生附加震害;圍護墻、隔墻等與主體結構的連接,應避免設置不當而導致主體結構破壞;應避免吊頂塌落及懸吊較重的裝飾物墜落,不可避免時應采取可靠措施。
(4)、建筑物在強震作用下的表現,既是對抗震設計的檢驗,也是對施工質量的檢驗。施工質量的好壞,直接影響鋼結構房屋的抗震能力。因此,抗震結構對材料和施工質量的特別要求,應在設計文件上注明。建筑物的施工要特別注意符合圖紙上合理的抗震要求,注意材料選擇,確保施工質量。
隨著人們對地震的不斷認識,為防止出現嚴重的地震的嚴重災害,造成財產損失和生命傷亡。人們對高層鋼結構房屋的抗震要求不斷提高。本文闡明了設計人員進行高層鋼結構房屋抗震設計時,應首先從概念設計著手,制定比較合理的設計方案等,確保房屋抗震設防目標的實現。
鋼結構各種流程
應注意的事項
(1)制作:鋼結構制作包括放樣、號料、切割、校正等諸多環節。高強度螺栓處理后的摩擦面,抗滑移系數應符合設計要求。
制作質量檢驗合格后進行除銹和涂裝。一般安裝焊縫處留出30~50mm暫不涂裝。
(2)焊接:焊工必須經考試合格并取得合格證書,且必須在其考試合格項目及其認可范圍內施焊。焊縫施焊后須在工藝規定的焊縫及部位打上焊工鋼印。
焊接材料與母材應匹配,全焊透的一、二級焊縫應采用超聲波探傷進行內部缺陷檢驗,超聲波探傷不能對缺陷作出判斷時,采用射線探傷。
施工單位首次采用的鋼材、焊接材料、焊接方法等,進行焊接工藝評定。
(3)運輸:運輸鋼構件時,要根據鋼構件的長度和重量選用車輛。鋼構件在車輛上的支點、兩端伸出的長度及綁扎方法均應保證構件不產生變形、不損傷涂層。
(4)安裝:鋼結構安裝要按施工組織設計進行,安裝程序須保證結構的穩定性和不導致永久性變形。安裝柱時,每節柱的定位軸線須從地面控制軸線直接引上。鋼結構的柱、梁、屋架等主要構件安裝就位后,須立即進行校正、固定。
由工廠處理的構件摩擦面,安裝前須復驗抗滑移系數,合格后方可安裝。
(5)防火與防銹:
1)鋼結構防火性能較差。當溫度達到550℃時,鋼材的屈服強度大約降至正常溫度時屈服強度的0.7,結構即達到它的強度設計值而可能發生破壞。
設計時應根據有關防火規范的規定,使建筑結構能滿足相應防火標準的要求。在防火標準要求的時間內,應使鋼結構的溫度不超過臨界溫度,以保證結構正常承載能力。
2)外露的鋼結構可能會受到大氣,特別是被污染的大氣的嚴重腐蝕,最普通的是生銹。這就必須對構件的表面進行防腐蝕處理,以保證鋼結構的正常使用。防腐處理的方法根據構件表面條件及使用壽命的要求決定。
更多關于工程/服務/采購類的標書代寫制作,提升中標率,您可以點擊底部官網客服免費咨詢:
關于高層鋼結構第二階段抗震設計和淺析鋼結構抗震設計的介紹到此就結束了,不知道你從中找到你需要的信息了嗎 ?如果你還想了解更多這方面的信息,記得收藏關注本站。
推薦閱讀: